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Abstract
Electromyograms (EMG) are recorded electrical signals generated from the muscles and these
signals are closely interrelated with the muscle activity and hence are useful for the investi-
gation of neuro-muscular disorders. The feature mining, feature collection and development of
classification systems are greatly significant steps in the differentiation of normal and abnor-
mal EMG signals to evaluate the abnormality. In this work, time-frequency domain based
features of regular, myopathy and Amyotrophic Lateral Sclerosis (ALS) EMG signals were
extracted from four different techniques namely Stockwell-Transform (ST), Wigner-Ville
Transform (WVT), Synchro-Extracting Transform (SET) and Short-Time Fourier Transform
(STFT). The Particle Swarm Optimization (PSO) with fractional velocity update technique
was implemented for feature reduction. Further, the classifier based on the Deep Neural
Networks (DNN) was developed by employing the features selected using fractional PSO.
Finally, the performance of the DNN was compared with that of the Shallow Neural Network
(SNN) classifier. Results of this work demonstrate that, the performance measure of the DNN
classifiers is higher than that of the SNN classifier. This work appears to be of good clinical
significance since efficient classification techniques are required for the development of robust
neuro-muscular diagnosis systems.
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1 Introduction

The Neuro-Muscular (NM) disorders comprise of several disorders which influence the human
muscular system and nervous system and the early diagnosis leads to efficient treatment strategies
[13]. There are two most frequent muscular disorders namely the Amyotrophic Lateral Sclerosis
(ALS) and Myopathy [10]. ALS is a fast-developing NM disease which is fatal and affects the
neurons in peripheral and central nervous systems [4]. Myopathies are manifested by muscle
weakness, muscle dysfunction, muscle cramps, stiffness, spasm, etc. [14].

Normally, NM malfunction is normally evaluated based on the EMG recorded in a
controlled environment. During this recording procedure, the electric signals from the human
muscular system are acquired using surface electrodes or needle electrodes from the voluntary
or non-voluntary muscles. Further, the EMG signals are utilized in several medical applica-
tions, such as machine interfacing, robotic control, medical diagnostics, prosthesis, and
rehabilitation [47]. The investigation of EMG signals is preferred only in quantitative analysis
techniques instead of qualitative inspection, due to the non-stationary nature of EMG signals
[49]. Hence, the feature extraction, feature optimization and development of classification
techniques need to be employed for the efficient discrimination of normal and abnormal
EMGs.

The feature extraction involves the process of extracting useful information which describes
the characteristics of original EMG signals [33]. Recently, several researchers have utilized
various time domain features, frequency and time frequency domain features, such as auto-
correlation, contrast, spectral peak power, mean frequency, entropy, mean etc., to implement
efficient classification of normal and abnormal EMG signals [1–3, 15, 38, 45]. Ambikapathy
et al. (2018) [5] have analyzed the quality of information content of EMG signals recorded
with the help of three types of electrodes such as mono polar needle, concentric needle, and
surface electrodes. The authors have concluded that the information quality of EMG signals
recorded using needle electrodes is superior compared to that of the surface electrodes. Wang
et al. (2014) [48] have utilized the time and time-frequency features of EMG signals recorded
with surface electrodes for the classification of different forearm movements. These authors
concluded that the time-frequency features of surface EMG signals are more prominent for the
classification of different forearm movements when compared to the time domain features.
Karthick et al. (2018) [27] have considered the time-frequency features of surface EMG
signals for the classification of fatigue and non-fatigue conditions. They concluded that the
time-frequency features of surface EMG signals have higher classifier accuracy for the
discrimination of non-fatigue and fatigue conditions.

Generally, for the extraction of different time-frequency features, transformation techniques
are required to convert one dimensional time series into two dimensional time-frequency
images [11]. Recently, several researchers have utilized various transformation techniques such
as Discrete Cosine transform (DCT), Stockwell-Transform (ST), Wigner-Ville Transform
(WVT), Synchro-Extracting Transform (SET), Continuous Wavelet Transform (CWT), etc.,
for the examination of EMG signals [16, 21].

The performance of the developed classifiers may be influenced by several issues, such as
redundant features and the large dimensionality of the feature set [39]. Hence, the feature
selection or feature reduction is a necessary step for the selection of optimal feature sub-set and
also useful for the improvement of the classifier performance [40]. In recent years, several
algorithms have been implemented to determine the appropriate feature set for the classifica-
tion of bio-signals [17, 18, 24, 25, 36, 39–41, 44].
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In recent years, several machine learning algorithms with supervised and unsupervised
learning schemes, such as K-means, K-nearest neighbor, support vector machines, decision
tress, artificial neural networks, and deep learning techniques have been adopted for the
discrimination of EMG signals [8, 9, 22, 23, 26, 30]. The Deep Neural Network (DNN) is a
novel machine learning technique that has more learning ability and can solve complex
problems which require higher generalization capabilities. DNN models are highly useful in
biomedical applications such as the development of diagnosis systems, signal and image
analysis [7].

In this work, the EMG signal features extracted using four different time-frequency
transformation techniques namely ST, WVT, SET, and STFT have been utilized for the
development of DNN classifier for the automated diagnosis of myopathy and ALS conditions.

2 Methodology

2.1 Acquisition of EMG signals

In this work, EMG signals were acquired from brachial biceps muscles of normal and
abnormal (myopathy and ALS) subjects, using concentric needle electrodes. The one hundred
and fifty EMG signals from normal, myopathy and ALS cases were recorded. The sampling
rate of acquired EMG signals is 23,437.5 Hz. The EMG signals were taken from the
benchmark EMG signals database [www.emglab.net] [31].

2.2 Feature extraction and selection

Initially, the time-frequency transformation techniques, such as SWT, WVT, STFT and SET
were implemented to extract useful features from normal and abnormal EMG signals. Finally,
eighty valuable features were extracted from the time-frequency images obtained using four
different transformation techniques to analyze and classify these EMG signals. The overview
of this research work is presented in Fig. 1. Initially, various class of EMG signals such as
normal, myopathy and ALS were extracted from a chosen muscle group using various
electrodes. The essential signal features are then extracted using time-frequency transformation
techniques and a PSO with fractional velocity update algorithm is then implemented to select
the key feature sub-set among the extracted initial time-frequency features. Finally, a classifier
system based on the DNN and SNN were developed and its classification performance were
evaluated and recorded.

Fig. 1 Overview of proposed EMG evaluation approach
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2.2.1 Stock-well transform (ST)

Hence, it is also referred as phase corrected continuous wavelet transform or frequency
dependent short time Fourier transform [35, 46]. Considering the continuous time sequence
h(t), the spectrum time at t − τ can be found by the product of h(t) with the Gaussian window
g(t − τ, σ) placed atτ. Hence, the S transform S(f, τ, σ) can be expressed as [35],

S f ; τ ;σð Þ ¼ ∫
∞

−∞
h tð Þg t−τ ;σð Þe−i2πftdt ð1Þ

The Gaussian window g(t − τ, σ) is given by,

g t−τ ;σð Þ ¼ 1
ffiffiffiffiffiffiffiffi

2πσ
p e−

t2

2σ2 ð2Þ

σ ¼ 1

f
ð3Þ

where, σ is the dilation parameter of frequency and e−i2πft is the exponential kernel function.
Figure 2(a) to (c) show the typical time-frequency images of normal, myopathy and ALS EMG
signals, respectively, obtained using SWT.

2.2.2 Wigner-Ville transform (WVT)

Essentially the WVT is the double Fourier transform of the symmetrical ambiguity function
[6]. The expression for the WVT is given by [16, 43],

Pw t; fð Þ ¼ ∫
∞

−∞
e− j2πfτS* t−

1

2
τ

� �

S t þ 1

2
τ

� �

dτ ð4Þ

where, S∗(t) and S(t) are the real and imaginary signals [16, 43]. Figure 3(a) to (c) show the
typical time-frequency images of normal, myopathy and ALS EMG signals, respectively,
obtained using WVT.

Fig. 2 Typical SWT based time-frequency images of EMG signals (a) Normal, (b) Myopathy and (c) ALS
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2.2.3 Synchro-extracting transform (SET)

SET is a novel time-frequency method to evaluate the instantaneous amplitude and
frequency of the signals. In time-frequency analysis, SET giveshigh energy concen-
tration than the other conventional techniques. Considering, the multi signal compo-
nent S(t) can be given as [50],

S tð Þ ¼ ∑
n

k¼1
Ak tð Þ:eiφk tð Þ ð5Þ

The different signals are separated by the distance and compared to the window function, i.e.

φ
0
kþ1 tð Þ−φ0

k tð Þ > 2Δ ð6Þ
where, Ak is the instantaneous amplitude of the kth signal,φk is the instantaneous phase
of the kth signal and Δ is the frequency of the window function [50]. Figure 4(a) to
(c) show the time-frequency images of normal, myopathy and ALS EMG signals,
respectively, obtained using SET.

Fig. 3 Typical Wigner-Ville transform based time frequency images of (a) Normal, (b) Myopathy and (c) ALS
EMG signals

Fig. 4 Typical Synchro-Extracting based time-frequency images (a) Normal, (b) Myopathy and (c) ALS EMG
signals
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2.2.4 Short-time Fourier transform (STFT)

The STFT is the techniques, which is used to examine the bio-medical signals,which consists
of time fragment multiplied by window function of the signal [28]. Such equation can be
expressed as [28],

X kð Þ ¼ 1

N
∑
N−1

n¼0
w nð Þ:x nð Þ:e−i2πN kn ð7Þ

where, X(k) is the frequency spectrum of kth signal, w(n) is the window function, x(n) is the
signal sample up to nth times and N is the sample number in the window [32]. The peak
frequency is determined by using frequency spectrum of the signal, which is expressed using
the formula [32],

f max ¼ arg
f p
N
max ∑

N−1

k¼0
X kð Þ

� �

ð8Þ

where, fp is the sampling frequency. Figure 5(a) to (c) show the typical time-frequency images
obtained using STFT, from normal, myopathy and ALS EMG signals, respectively.

In this work, nineteen GLCM features [19, 37, 42] were extracted along with the fractal
dimension for the analysis of EMG signals. Finally, eighty useful features were extracted from
the time-frequency images obtained using four different transformation techniques. Further,
the particle swarm optimization algorithm with fractional velocity update has been used to
select the feature subset consisting of fifteen optimal features from the original feature set. The
fifteenselected featuresare mentioned in Table 1.

2.3 Shallow and deep neural network classifiers

In recent years, researchers have used various architectures and algorithms in deep learning
such as the DNN, Deep Belief Network (DBN), Convolutional Neural Network (CNN), auto
encoder etc., for solving the complex problems in biomedical applications [29]. Also, the deep
learning algorithms can perform efficiently when compared to the conventional shallow
network architecture since the deep networks have higher learning and generalization capa-
bility. In other words, the shallow neural networks have higher memorization capability while
the deep architectures have more generalization capabilities. The Deep Neural network (DNN)
architecture is an extension of the Neural Network (NN) architecture and has more than two

Fig. 5 Typical Short-time Fourier transform based time-frequency images (a) Normal, (b) Myopathy and (c)
ALS EMG signals
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hidden layers in the architecture across the input and the output layers [12, 20]. Due to this
architectural complexity, the DNN can efficiently explore the complex and nonlinear problems
in science and technology. Figure 6 shows the architecture of shallow and deep neural
networks where IL is the input layer, OL is the output layer, L is the number of hidden layers
and N is the number of hidden neurons. In the case of SNN, only one hidden layer (L = 1) is
presented in the architecture. In this work, both SNN and DNN were developed with different
number of neurons (N = 5, 10, 15, 20) and with different number of layers (L = 1, 2, 3, 4, 5) for
the classification of the EMG signals using the adopted feature subset. In the case of the
developed SNN, four different number of neurons (N = 5, 10, 15, 20) were adopted. Further,
the DNN classifiers were developed with various numbers of hidden layers (L = 2, 3, 4, 5) and
with different number of neurons (N = 5, 10, 15, 20). Further, a tan-sigmoid activation function
was utilized. The selected features from 70% of the total number of signals was used for
training the classifiers and the remaining 30% was used for testing the classifiers.

Finally, the comparative analysis of the developed DNN and SNN classifiers was per-
formed using the performance measures such as the Accuracy, Sensitivity, Specificity, Positive
Predictive Values (PPV) and Negative Predictive Values (NPV).

Table 1 The Fifteen selected features for development of DNN classifiers

Transformation Techniques Features selected using PSO with fractional velocity update

SWT Cluster Shade (CS)
SumEntropy (SE)

WVT Auto Correlation (AC)
Contrast (CON)
DifferenceVariance (DV)
Fractal Dimension (FD)

SET Auto Correlation (AC)
InformationMeasure of Correlation1(IMC1)
SumAverage (SA)

STFT ClusterProminence (CP)
DifferenceVariance (DV)
Homogeneity (H)
Information Measure of correlation2 (IMC2)
SumEntropy (SE)
Fractal Dimension (FD)

Fig. 6 Architecture of Shallow and Deep neural networks

Multimedia Tools and Applications (2020) 79:11051–11067 11058



3 Results and discussion

In this section summaries the results obtained with the experimental work. The proposed work
is implemented using a workstation of Intel® core i3-3217 U CPU@1.80GHz 8 GB RAM
equipped with Matlab software.

Figure 7 shows the accuracy of developed shallow and deep neural networks for the classi-
fication of normal, ALS andmyopathy EMG signals. It is observed that the accuracy of developed
SNN with 15 neurons (N = 15) is higher when compared to the accuracy of SNN with other
adopted number of neurons (N = 5, 10, 20). Further, the accuracy of the developed DNNwith four
hidden layers and with neurons (N = 5) is higher when compared to the accuracy of the developed
deep neural networks with different number of layers (Layers = 2, 3, 5) with different combination
of neurons. Also, it is seen that the accuracy of developed deep neural network classifiers with five
hidden layers and with different combination of neurons is lesser when compared to the accuracy
of the developed deep neural network classifiers for other adopted number layers with different
number of neurons. Results demonstrate that the accuracy of the developed classifiers is high
when the number of layers is selected between 2 and 4. Further increase in the number of hidden
layers is found to decrease the diagnostic accuracy.

The sensitivity for the developed SNN and DNN classifiers for the discrimination of normal,
ALS and myopathy EMG signals with different number of layers and for different number of
neurons is presented in Fig. 8. In the case of shallow neural network, the sensitivity of the
developed classifier with 15 neurons (N = 15) is higher when compared to the sensitivity of
developed classifiers with other adopted number of neurons (N = 5, 10, 20). Further, the sensi-
tivity of the DNNwith four hidden layers andwith neuron (N = 5) is higher when compared to the
sensitivity of the DNN with different number of layers (Layers = 2, 3, 5) with different combi-
nation of neurons. Also, it is found that the sensitivity of developed deep neural network classifiers
with five hidden layers and with different combination of neurons is lesser when compared to the
sensitivity of the developed deep neural network classifiers for other adopted number layers with
different number of neurons. Results demonstrate that the sensitivity of the developed classifiers is

Fig. 7 The variation of accuracy for the developed SNN and DNN classifiers with different the number of
neurons, shown as a function of the number of hidden layers
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high when the number of layers is selected between 2 and 4. Further increase in the number of
hidden layers is found to decrease the classification sensitivity.

Figure 9 presents the variation in specificity for the developed shallow and deep neural
networks for the classification of EMG signals with different number of layers and with different
number of neurons. The results demonstrate that the specificity of the developed deep neural
networks with four hidden layers and with five neurons in each layer is higher when compared to
the specificity of the developed deep neural networks with different layers and with different
number of neurons. Also, it is found that the number of layers is selected between 2 and 4, the
classification specificity of the developed classifiers is high. Additionally, decreases in the
classification specificity are found to be increase in the number of hidden layers.

Fig. 8 The variation of Sensitivity for the developed SNN and DNN classifiers with different the number of
neurons as a function of the number of hidden layers

Fig. 9 The variation of specificity for the developed Shallow and deep neural network classifiers with different
the number of neurons, shown as a function of the number of hidden layers
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The Positive Predictive Value (PPV) of developed SNN and DNN classifiers with different
number of neurons and with different number of layers is presented in Fig. 10. It is seen that
the PPVof the developed deep neural networks with four hidden layers and with neuron (N =
5) is higher than the PPV of the developed deep neural networks with different number of
layers (Layers = 2, 3, 5) with different number of neurons. Results demonstrate that the PPVof
the developed classifiers is high when the number of layers is selected between 2 and 4.
Further increase in the number of hidden layers is found to decrease the classification PPV.

Figure 11 shows the Negative Predictive Value (NPV) of DNN and SNN for the classification of
normal, myopathy and ALS EMG signals with different number of layers and with different
number of neurons. It is observed that the NPV of SNN classifiers with 15 neurons (N = 15) is

Fig. 10 The variation of PPV for the developed Shallow and deep neural network classifiers with different the
number of neurons as a function of the number of hidden layers

Fig. 11 The variation of NPV for the developed Shallow and deep neural network classifiers with different the
number of neurons, shown as a function of the number of hidden layers
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higher when compared to the NPV of developed shallow neural network classifiers with other
adopted number of neurons (N = 5, 10, 20). Further, theNPVof the developed deep neural networks
with four hidden layers and with neuron (N = 5) is higher than the NPVof the DNN with different
number of layers (Layers = 2, 3, 5) with different combination of neurons. Results demonstrate that
the NPVof the developed classifiers is high when the number of layers is selected between 2 and 4.
Further increase in the number of hidden layers is found to decrease the classification NPV.

Figure 12 shows the computational time (in seconds) for DNN and SNN with different
number of layers and with different combination of neurons. It is seen that the computational
time is increases with increases of number of layers between 1 and 4. Further, the computa-
tional time is decreases with increases of number layers more than 4.

Table 2 presents the computational time for the training the DNN and SNN classifiers with
different number of layers and with different combination of neurons. It is found that the
computational time is increases with increases of number of layers andwith the number of neurons.

Table 3 presents the numerical values of the performance metrics of the DNN and SNN
classifiers, for various numbers of hidden layers and hidden neurons. It is seen that the deep
neural network with L = 4 (Fourth hidden layer) and N = 5 (neurons), is more efficient than the
other developed classifiers, with an Accuracy of 97.7%, Sensitivity of 98.03%, Specificity of
98.98%, NPVof 97.43% and PPVof 98.85%.

Fig. 12 The variation of computational time for the developed shallow and deep neural network classifiers with
different the number of neurons, shown as a function of the number of hidden layers

Table 2 Computational time (seconds) for the developed shallow and deep neural network classifiers

Neurons Layers

1 2 3 4
Computational Time (seconds)

5 6.5 9.1093 5.906 5.093
10 3.796 4.953 5.312 6.265
15 4.39 6.453 5.828 5.625
20 4.5 8 9.187 10.062

Multimedia Tools and Applications (2020) 79:11051–11067 11062



Ta
bl
e
3

T
he

pe
rf
or
m
an
ce

m
ea
su
re
s
of

th
e
de
ve
lo
pe
d
sh
al
lo
w

an
d
de
ep

ne
ur
al
ne
tw
or
k
cl
as
si
fi
er
s

Q
ua
lit
y
M
ea
su
re
s

Sh
al
lo
w

N
eu
ra
l
N
et
w
or
k

D
ee
p
N
eu
ra
l
N
et
w
or
k

N
um

be
r
of

L
ay
er
s
(L
)
in

D
ee
p
N
eu
ra
l
N
et
w
or
k

L
=
2

L
=
3

L
=
4

L
=
5

N
eu
ro
ns

(N
)
in

ea
ch

la
ye
r

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

A
cc
ur
ac
y

91
.1
0

93
.3
0

95
.5

93
.3
0

93
.3
0

91
.1
0

93
.3
0

88
.8
0

95
.5
0

91
.1
0

93
.3
0

84
.4
0

97
.7
0

95
.5
0

91
.1
0

91
.1
0

31
.1
0

31
.1
0

26
.6
6

31
.1
0

Se
ns
iti
vi
ty

90
.8
9

93
.3
7

95
.2
1

93
.1
5

93
.2
7

90
.4
7

93
.1
9

89
.4
4

94
.8
7

92
.1
5

94
.1
1

84
.2
5

98
.0
3

96
.8
2

91
.9
1

91
.3
1

10
.3
0

10
.3
6

33
.3
3

33
.3
3

Sp
ec
if
ic
ity

95
.3
3

96
.6
4

97
.8
4

96
.5
8

96
.7
7

95
.4
6

96
.6
8

94
.5
1

97
.9
7

95
.8
6

96
.6
3

92
.1
4

98
.9
8

97
.9
1

95
.6
7

95
.5
7

43
.6
6

43
.7

4.
21

43
.7
0

PP
V

92
.5
0

93
.1
9

95
.2
1

94
.1
6

93
.2
6

91
.7
2

93
.3
8

89
.3
2

95
.2
3

91
.6
6

93
.1
7

83
.7
0

97
.4
3

95
.5
5

91
.0
6

90
.9
3

33
.3
3

33
.3
3

33
.3
3

33
.3
3

N
PV

95
.7
5

96
.6
8

97
.8
4

96
.7
8

96
.7
6

95
.8
2

96
.6
4

94
.7
2

98
.0
3

95
.5
8

96
.5
0

92
.2
0

98
.8
5

97
.4
3

95
.4
7

95
.5
4

66
.6
6

66
.6
6

66
.6
6

66
.6
6

Multimedia Tools and Applications (2020) 79:11051–1106711063



4 Conclusion

The electrical signals from the human muscles were utilized to analyze the neuromuscular
disorders and these signals are referred as Electromyograms. In this work, the time-frequency
domain images were obtained from four different transformation techniques. Further, the time-
frequency features sub set were extracted from the time-frequency images. A feature selection
approach based on PSO with fractional velocity update was implemented for the selection of
15 significant features for the efficient classification of EMG signals [34]. Also, the two
classifiers networks were developed using shallow and deep neural network classifiers and the
comparative analysis of developed shallow and deep neural network classifiers were per-
formed using the performance metrics of the developed classifiers networks. Results demon-
strate that the accuracy of the developed DNN classifier with fourth layer (L = 4) and with 5
neurons in each layer,is higher when compared to the accuracy of the other developed neural
networks with different number of layers and with different number of neurons in each layer.
Also, the other performance metrics such as sensitivity, specificity, PPVand NPV values of the
developed deep neural network classifier with four layer and with neurons (N = 5) is higher
when compared to the developed other neural network classifiers with different number of
layers and with different combination of adopted neurons. This work seems to be of high
clinical relevance since that the developed deep neural network classifiers is more efficient for
the classification of EMG signals and also it is necessary for proper diagnosis of neuromus-
cular disorders.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

1. Alagumariappan P, Krishnamurthy K (2018) An Approach Based on Information Theory for Selection of
Systems for Efficient Recording of Electrogastrograms. In Proceedings of the International Conference on
Computing and Communication Systems (pp. 463–471). Springer, Singapore

2. Alagumariappan P, Rajagopal A, Krishnamurthy K (2016) Complexity Analysis on Normal and Abnormal
Electrogastrograms Using Tsallis Entropy. In 3rd International Electronic and Flipped Conference on
Entropy and Its Applications. Multidisciplinary Digital Publishing Institute

3. Alagumariappan P, Krishnamurthy K, Kandiah S, Ponnuswamy MJ (2017) Effect of electrode contact area
on the information content of the recorded electrogastrograms: an analysis based on Rényi entropy and
Teager-Kaiser energy. Polish Journal of Medical Physics and. Engineering 23(2):37–42

4. Al-Barazanchi KK, Al-Neami AQ, Al-Timemy AH (2017). Ensemble of bagged tree classifier for the
diagnosis of neuromuscular disorders. In Advances in Biomedical Engineering (ICABME), 2017 Fourth
International Conference on (pp. 1–4). IEEE

5. Ambikapathy B, Krishnamurthy K (2018) Analysis of electromyograms recorded using invasive and
noninvasive electrodes: a study based on entropy and Lyapunov exponents estimated using artificial neural
networks. J Ambient Intel Humanized Comput 1–9

6. Amin M, Cohen L, Williams WJ (1993). Methods and applications for time frequency analysis. In
Conference Notes, University of Michigan

7. Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep
convolutional neural networks. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2018.04.065

8. Ansari GJ, Shah JH, Yasmin M, Sharif M, Fernandes SL (2018) A novel machine learning approach for
scene text extraction. Future Gen Comput Syst

9. Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017)
Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94:112–117

Multimedia Tools and Applications (2020) 79:11051–11067 11064

https://doi.org/10.1016/j.future.2018.04.065


10. Belkhou A, Jbari A, Belarbi L (2017) A continuous wavelet based technique for the analysis of electro-
myography signals. In Electrical and Information Technologies (ICEIT), 2017 International Conference on
(pp. 1–5). IEEE

11. Boashash B (1991) Time-frequency signal analysis. Prentice Hall
12. Chandra B, Sharma RK (2016) Fast learning in deep neural networks. Neurocomputing 171:1205–1215
13. Christodoulou CI, Pattichis CS (1999) Unsupervised pattern recognition for the classification of EMG

signals. IEEE Trans Biomed Eng 46(2):169–178
14. Duque CJG, Muñoz LD, Mejía JG, Trejos ED (2014). Discrete wavelet transform and k-nn classification in

EMG signals for diagnosis of neuromuscular disorders. In Image, Signal Processing and Artificial Vision
(STSIVA), 2014 XIX Symposium on (pp. 1–5). IEEE

15. Daud WMBW, Yahya AB, Horng CS, Sulaima MF, Sudirman R (2013) Features extraction of electromy-
ography signals in time domain on biceps Brachii muscle. Int J Model Opt 3(6):515

16. Davies MR, Reisman SS (1994) Time frequency analysis of the electromyogram during fatigue. In
Bioengineering Conference, 1994., Proceedings of the 1994 20th Annual Northeast (pp. 93–95). IEEE

17. Fernandes SL, Chakraborty B, Gurupur VP, Prabhu G (2016) Early skin cancer detection using computer
aided diagnosis techniques. J Integr Des Process Sci 20(1):33–43

18. Fernandes SL, Gurupur VP, Lin H, Martis RJ (2017) A novel fusion approach for early lung Cancer
detection using computer aided diagnosis techniques. J Med Imaging Health Inform 7(8):1841–1850

19. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst
Man, Cybernet 3(6):610–621

20. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Larochelle H (2017) Brain tumor
segmentation with deep neural networks. Med Image Anal 35:18–31

21. Jang GC, Cheng CK, Lai JS, Kuo TS (1994) Using time-frequency analysis technique in the classification
of surface EMG signals. In Engineering in Medicine and Biology Society, 1994. Engineering Advances:
New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of
the IEEE (Vol. 2, pp. 1242–1243). IEEE

22. Kamalanand K, Jawahar PM (2012) Coupled jumping frogs/particle swarm optimization for estimating the
parameters of three dimensional HIV model. BMC Infect Dis 12(1):P82

23. Kamalanand K, Jawahar PM (2013a) Particle swarm optimization based estimation of HIV-1 viral load in
resource limited settings. Afr J Microbiol Res 7(20):2297–2304

24. Kamalanand K, Jawahar PM (2014b) Hybrid BFPSO algorithm based estimation of optimal drug dosage for
antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis 14(S3):E14

25. Kamalanand K, Mannar Jawahar P (2015) Comparison of swarm intelligence techniques for estimation of
HIV-1 viral load. IETE Tech Rev 32(3):188–195

26. Kamalanand K, Mannar Jawahar P (2016) Comparison of particle swarm and bacterial foraging optimiza-
tion algorithms for therapy planning in HIV/AIDS patients. Int J Biomath 9(02):1650024

27. Karthick PA, Ghosh DM, Ramakrishnan S (2018) Surface electromyography based muscle fatigue detection
using high-resolution time-frequency methods and machine learning algorithms. Comput Methods Prog
Biomed 154:45–56

28. Kuniszyk-Józkowiak W, Jaszczuk J, Sacewicz T, Codello I (2012). Time-frequency Analysis of the EMG
Digital Signals. In Annales UniversitatisMariae Curie-Sklodowska (Vol. 12, No. 2, p. 19). De Gruyter Open
Sp. z oo

29. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures
and their applications. Neurocomputing 234:11–26

30. Manickavasagam K, Sutha S, Kamalanand K (2014) Development of systems for classification of different
plasmodium species in thin blood smear microscopic images. J Adv Microsc Res 9(2):86–92

31. Nikolic M (2001) Detailed Analysis of Clinical Electromyography Signals EMG Decomposition, Findings
and Firing Pattern Analysis in Controls and Patients with Myopathy and Amytrophic Lateral Sclerosis. PhD
Thesis, Faculty of Health Science, University of Copenhagen. [The data are available as dataset N2001 at
http://www.emglab.net]

32. Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guerit JM, Hinrichs H et al (1999) IFCN
standards for digital recording of clinical EEG. The International Federation of Clinical Neurophysiology.
Electroencephalogr Clin Neurophysiol Suppl 52:11

33. Phinyomark A, Phukpattaranont P, Limsakul C (2012) Feature reduction and selection for EMG signal
classification. Expert Syst Appl 39(8):7420–7431

34. Pires ES, Machado JT, de Moura Oliveira PB, Cunha JB, Mendes L (2010) Particle swarm optimization
with fractional-order velocity. Nonlinear Dynamics 61(1–2):295–301

35. Quynh TL, Ardi HA, Gilat M, Rifai C, Ehgoetz MK, Georgiades M, … Nguyen HT (2017). Detection of
turning freeze in Parkinson's disease based on S-transform decomposition of EEG signals. In Conference

Multimedia Tools and Applications (2020) 79:11051–1106711065

http://www.emglab.net


proceedings:... Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Conference (Vol. 2017, p. 3044)

36. Raja NSM, Rajinikanth V, Fernandes SL, Satapathy SC (2017) Segmentation of breast thermal images using
Kapur's entropy and hidden Markov random field. J Med Imaging Health Inform 7(8):1825–1829

37. Raja NSM, Fernandes SL, Dey N, Satapathy SC, Rajinikanth V (2018) Contrast enhanced medical MRI
evaluation using Tsallis entropy and region growing segmentation. Journal of Ambient Intelligence and
Humanized Computing, 1–12

38. Rajagopal A, Alagumariappan P, Krishnamurthy K (2018) Development of an Automated Decision Support
System for Diagnosis of Digestive Disorders Using Electrogastrograms: An Approach Based on Empirical
Mode Decomposition and K-Means Algorithm. In Expert System Techniques in Biomedical Science
Practice (pp. 97–119). IGI Global

39. Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor
from brain MR images–a study with teaching learning based optimization. Pattern Recogn Lett 94:87–94

40. Rajinikanth V, Raja NSM, Satapathy SC, Fernandes SL (2017) Otsu’s multi-thresholding and active contour
snake model to segment dermoscopy images. J Med Imaging Health Inform 7(8):1837–1840

41. Rajinikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from
brain MRI using Tsallis function and Markov random field. J Control Eng Appl Inform 19(2):97–106

42. Rajinikanth V, Dey N, Satapathy SC, Ashour AS (2018) An approach to examine magnetic resonance
angiography based on Tsallis entropy and deformable snake model. Futur Gener Comput Syst 85:160–172

43. Ricamato AL, Absher RG, Moffroid MT, Tranowski JP (1992). A time-frequency approach to evaluate
electromyographic recordings. In Computer-Based Medical Systems, 1992. Proceedings., Fifth Annual
IEEE Symposium on (pp. 520–527). IEEE

44. Sharif M, Khan MA, Faisal M, Yasmin M, Fernandes SL (2018) A framework for offline signature
verification system: best features selection approach. Pattern Recogn Lett

45. Sharma S, Farooq H, Chahal N. Feature Extraction and Classification of Surface EMG Signals for Robotic
Hand Simulation

46. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE
Trans Signal Process 44(4):998–1001

47. Subasi A (2012) Classification of EMG signals using combined features and soft computing techniques.
Appl Soft Comput 12(8):2188–2198

48. Wang G, Zhang Y, Wang J (2014) The analysis of surface emg signals with the wavelet-based correlation
dimension method. Comput Math Methods Med

49. Yousefi J, Hamilton-Wright A (2014) Characterizing EMG data using machine-learning tools. Comput Biol
Med 51:1–13

50. Yu G, Yu M, Xu C (2017) Synchroextracting Transform. IEEE Transactions on Industrial Electronics

A. Bakiya received her M.E. degree in VLSI Design from Anna University in 2011. She is currently pursuing her
Ph.D. in the field of Biomedical Engineering at the Department of Instrumentation Engineering, MIT campus,
Anna University Chennai, India. Her research areas include Biomedical Engineering and VLSI Design.

Multimedia Tools and Applications (2020) 79:11051–11067 11066



Dr. K. Kamalanand completed his Ph. D at MIT Campus, Anna University in the field of Biomedical
Engineering. At present he is an Assistant Professor at the Department of Instrumentation Engineering, Madras
Institute of Technology Campus, Anna University, Chennai, India. He is well published with more than 60
publications to his credit. He is a member of the Council of Asian Science Editors. His research interests include
Biomedical Engineering, Mathematical Modelling, Artificial Intelligence and Nanotechnology.

Dr. V. Rajinikanth earned his Ph.D. degree in Electrical Engineering from MIT Campus, Anna University,
Chennai, in 2013. Currently, he is a Professor in the Department of EIE, St. Joseph’s College of Engineering,
Chennai, India. He has published 50 papers in several international conferences and journals.

Multimedia Tools and Applications (2020) 79:11051–1106711067



Prof. Ramesh Nayak is currently working as Associate Professor in Canara Engineering College,
Benjanapadavu, Mangaluru, Karnataka, India. He is serving as Associate Professor in the department of
Information Science and Engineering. He received his M. Tech degree from University of Mysore, Mysore,
India. He is pursuing PhD in image processing. His research interest includes Image processing, Machine
Learning, Data Mining, Computer Networks. He has teaching experience of 19 years and research experience of
4 years. He has published several research papers in national, International conferences and Journals.

Dr. Seifedine Kadry , has been a Professor with Beirut Arab University, Lebanon since 2017. He serves as
Editor-in-Chief of the Research Journal of Mathematics and Statistics and the ARPN Journal of Systems and
Software. He worked as Head of Software Support and Analysis Unit of First National Bank where he designed
and implemented the data warehouse and business intelligence.

Multimedia Tools and Applications (2020) 79:11051–11067 11068


	Deep neural network assisted diagnosis of time-frequency transformed electromyograms
	Abstract
	Introduction
	Methodology
	Acquisition of EMG signals
	Feature extraction and selection
	Stock-well transform (ST)
	Wigner-Ville transform (WVT)
	Synchro-extracting transform (SET)
	Short-time Fourier transform (STFT)

	Shallow and deep neural network classifiers

	Results and discussion
	Conclusion
	References


