
APPLICATION OF SOFT COMPUTING

Toward in-flight Wi-Fi: a neuro-fuzzy based routing approach for Civil
Aeronautical Ad hoc Network

T. Gurumekala1 • S. Indira Gandhi1

Accepted: 11 November 2021 / Published online: 30 January 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In-Flight Wi-Fi connectivity (IFC) paves way for supporting the Internet of Things over the clouds by connecting things

inside a moving aircraft to the ground. Aeronautical Ad hoc Networks (AANET) is a new breed of Mobile Ad hoc

networks envisioned to experience IFC over remote or oceanic regions. Due to the challenging characteristics of AANET

such as limited bandwidth, intermittent connectivity, dynamic topologies, the greater velocity of aircraft, and variable

geographical network sizes, it is very hard to design a realistic mobility model and network routing with remarkable

Quality of Service (QoS) and requires immediate research solution. As the complexity of provisioning QoS network

services significantly relies on the routing layer, this work aims at providing intelligent, reliable, and efficient data delivery

with ensured QoS. In the aim of attaining a solution for QoS routing, this paper presents twofold design strategies. Firstly,

the mobility of moving aircraft is modeled with International Civil Aviation Organization separations standards to avoid

collisions among moving aircrafts, second is, a novel hybrid approach combining deep learning and fuzzy logic is proposed

to deal with highly dynamic nature and growing air traffic. The neighbor discovery phase of existing routing protocols

incurs more packet overhead and delay because of the traditional beaconing method, which is overcome in this work by

using Automatic Dependent Surveillance-Broadcast as it is kept on broadcasting the neighbor’s information in the cockpit

display of every aircraft. To avoid the overwhelming of nodes, this work uses queuing delay of the neighbors to identify the

node’s ability for packet transmission fairly distributes the load among aircrafts. The simulation results show that the

proposed work provides notable improvements in packet delivery ratio, end-to-end delay, and traffic overhead compared to

the existing routing protocols in sparse and dense network scenarios.

Keywords Neuro-fuzzy inference systems � Aeronautical Ad hoc Networks � Internet of Things � Quality of Service �
Deep neural networks � Automatic dependent service – broadcast

1 Introduction

The drastic growth in communication technologies has

emanated a thirst in air passengers to experience the

seamless internet connection as in ground to share their

valuable information online rather than offline for their

personal as well as commercial purposes utilizing Gmail,

Facebook, and onboard video conferencing. Consequently,

In-Flight Wi-Fi Connectivity (IFC) was introduced by the

airline industries in civil aviation to support the economic

growth of various domains by means of keeping people

always connected even at and above 35,000 ft. As per the

reports of Honeywell (Honeywell 2016), the statistics show

that around 75% of air passengers are willing to switch

airliners for seeking reliable and faster internet access, and

more than 20% of air passengers already switched their

airline to have a better internet experience. Moreover, the

IFC helps to realize the Internet of Things (IoT) in civil

aviation by interconnecting a massive number of comput-

ing devices inside the moving flights with the internet and

keep them always connected (Chettri et al. 2020; Zhang
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et al. 2019; Gupta and Aggarwal 2017; Whitmore et al.

2015). However, challenges persist in providing internet

connectivity in moving aircrafts with higher data rates, less

delay, and low cost (Ercetin et al. 2005). In addition, the air

traffic keeps on increasing drastically, which results in

resource scarcity in the AANET environment (Pasztor

2016). Figure 1 shows the current air traffic over the region

of Europe as an example. Currently, airline industries are

working toward incorporating IoT on moving airplanes

with the help of internet access and cellular connectivity

(Lutz et al. 2005; Ky et al. 2006). Internet access is pro-

vided to moving aircrafts by relying on either satellite-

based or cellular-based systems. Cellular-based systems

offer a direct link between moving flights and the ground

station by using the existing cellular-based infrastructure.

Due to the shorter coverage range, lack of ground infras-

tructure, and line-of-sight problem, cellular-based systems

are unable to cover remote or oceanic regions (Xu et al.

2019). Satellite-based systems (Peter Brooker 2008; Med-

ina et al. 2011; Vey et al. 2014) make a way for flights to

stay connected with the ground while flying over these

regions in the role of a relay. This system can cover wider

regions with higher speed, at the expense of long delay and

high cost. In real-time, Gogo Inc. is the leading in-flight

Wi-Fi service provider which provides both cellular-based

(ATG, ATG-4), and satellite-based (ku-band, Ka-band)

(GoGo 2016).

Sakhaee and Jamalipour (2005) introduced the concept

of AANET among moving airplanes as a supporting

communication system (air-to-air) when flights traverse

over the remote or oceanic regions. A typical architecture

of an aeronautical ad hoc network is depicted in Fig. 2.

AANETs is a member of MANETs as it inherits some of

the characteristics such as self-configuring, self-organizing,

self-healing, frequent topology changes, and mobility pat-

terns. Nevertheless, the unique natures of AANET, namely

geographic size of the network, high velocity of nodes,

limited bandwidth, and high node densities are the factors

complicating the process of routing and forwarding in

AANET not as of MANET. Specifically, the nodes in

AANETs fly at the speed of 700 km/hr to 900 km/hr,

which leads to frequent topology changes while the nodes

in MANETs move in human walking speed around

5–20 m/s. Hence, speed is the crucial factor in dealing with

great effort for improving routing performance above

30,000 ft. As the nature of AANET is highly different from

MANET, different design strategies for respective layers

are necessary to make the complete paradigm successful.

Among those, designing QoS-aware routing is a challeng-

ing phenomenon as it is the key to transmitting and

receiving data and determinant of end-user satisfaction. To

design an accurate QoS routing system in any kind of

network, it is mandatory to investigate different dimensions

of the network characteristics such as nature of the

Fig. 1 Air traffic over Europe

7402 T. Gurumekala, S. Indira Gandhi

123



communication medium, degree of adaptability of the

routing strategies, limited resources, and capacity of the

node (Jahn et al. 2003). In the case of AANET, the higher

mobility of the aircrafts and the restricted amount of

resources such as bandwidth, link availability, frequent

topology changes require significant effort in ensuring the

QoS to the end-users. The existing routing approaches for

AANET failed to consider the QoS of the routing as an

imperative factor and adaptive strategies according to the

dynamic and complex environments. For example, Luo and

Wang (2017) used the traditional beaconing method for

distributing and collecting neighbor information, which

results in inefficient use of the scarce resources in the

perspective of QoS routing. There is a trade-off between

accuracy and frequent update. Unlike any other network,

AANET has a native property called automatic dependent

surveillance-broadcast (ADS-B) for maintaining high

accuracy with little overhead. Moreover, QoS routing

inherently loads balancing in nature which is absent in the

existing approaches. By investigating the nature of

AANET and the research gap in QoS routing, this work

aims to accompany the strength of the artificial intelli-

gence-based learning method and the reasoning ability of

fuzzy logic.,

Due to the growth of a huge volume of communication

and computation in various emerging IoT applications

(Thompson et al. 2019), DL-driven algorithms started to

incorporate in wireless communication and network design

by many industries and researchers. For example, Li et al.

(2019) applies a DL algorithm, namely Q-learning for

solving traffic explosion problems in hierarchical wireless

networks. For improving the accuracy of indoor position by

integrating ML and DL algorithms, namely deep neural

networks with K-nearest neighbor algorithm (Abebe Belay

Adege et al. 2018). According to the prediction of

EUROCONTROL, in Europe alone, there will be 14.4

million flights in the year 2035, which is 1.8% average

annual growth compared to the flights in 2012. The AI can

be introduced to aircrafts by applying suitable machine

learning algorithms and soft computing techniques. In a

crowded environment, the aircrafts can be made as an

intelligent router to forward the data through an effective

routing path in the absence of an internet connection based

on the fuzzy rules trained neural network models. Many

Neuro-fuzzy systems are existing, namely, ANFIS, FuNe,

Fuzzy RuleNet, GARIC, or NEFCLASS, and NEF-

CON (Berenji et al. 1992; Halgamuge et al. 1994; Nauck

et al. 1996; Tschichold-Gürman 1996).

Due to the high adaptive nature of the situation, Adap-

tive Neuro-Fuzzy Inference System (ANFIS) is widely

used in various areas (Yadav and Balakrishnan 2014).

ANFIS techniques were originally framed and presented in

the year 1993 by Jang, which deals with complex nonlinear

systems. ANFIS is a data learning approach that uses the

knowledge reasoning ability of Fuzzy Logic to transform

the given inputs to the expected output through the multi-

layered feed-forward neural network processing elements.

ANFIS integrates the ability of two concepts, namely

Fuzzy Logic and Neural networks. The ANFIS functions

by applying the neural network learning methods to tune

the linguistic variables of the fuzzy logic. To enhance the

QoS in routing packets, the knowledge reasoning of fuzzy

logic in a nonlinear system by setting IF–THEN rules and

refining those rules with a multi-layered feed-forward

neural network is adapted in this work. The remaining

section of this work is organized as follows. In Sect. 2, the

existing routing methods and the application of deep

learning techniques wireless domain is thoroughly studied.

Section 3 illustrates the modified mobility model, and

Sect. 4 explains the proposed ANFIS based routing

Fig. 2 Typical Aeronautical Ad

hoc Network
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protocol in detail. Section 5 deals with results and dis-

cussion, where results attained for the proposed work and

comparison with the existing protocols is explained.

Finally, Sect. 6 concludes this work.

1.1 Problem statement

The ever-increasing air traffic growth and the unique nature

of AANET urge researchers to incorporate AI to ensure

QoS in routing strategies as the high-speed node movement

results in frequent topology changes. The existing works

are not sufficiently cover the network requirements of civil

aviation and fail to handle such a highly dense and complex

network environment, as the existing routing approaches

are completely unsuitable (Neji et al. 2013; Zhang et al.

2019). The reason is, firstly, they are unable to fit civil

aviation applications as the network requirements have

differed. Secondly, they failed to model the real move-

ments of aircrafts. Thirdly, the existing AANET protocols

considered single routing metrics for route selection and

failed to utilize AI for improving the overall network

performance. Fourthly, they fail to deal with the density of

data traffic as the traditional way has been applied in

neighbor discovery. Finally, the adaptive nature of routing

strategies needs to be developed to deal with the scalability

of the network. This work proposes a neuro-fuzzy based

technique called ANFIS to produce greatly accurate results

in highly dynamic and complex AANET by combining the

merits of adaptive control mechanism, neural network, and

fuzzy logic and modeled the real movements of aircrafts

and avoids the collisions by following the separation

standards of ICAO.

1.2 Authors contribution

• This work models the realistic mobility of the aircrafts

with ICAO standards to avoid collisions among moving

aircrafts.

• Beaconless way of neighbor discovery has been

followed with the help of Automatic dependent surveil-

lance-broadcast (ADS-B), which leads to bringing

accurate information at low cost. As a consequence,

routing delay and packet overhead are remarkably

reduced.

• The learning capability of neural networks and the

interpretation capability of fuzzy logic have been

utilized for finding the next hop in the routing process.

• To support the load-balancing aspect of QoS routing,

the queuing capacity of nodes is considered to reduce

the end-to-end delay and to improve the packet delivery

ratio.

2 Related works

The AANET routing protocols for AANET are classified

based on their origination as modified and Domain-Specific

routing protocols.

2.1 Modified MANET protocols

At the initial stages, the existing routing protocols for

MANET such as AODV, DSR, GPSR, ZRP, and OLSR

extended for AANET by considering its distinguished

features. Iordanakis et al. (2006) proposed an Ad hoc

routing protocol for aeronautical mobile ad hoc networks

(ARPAM) extended from AODV to find the shortest route

between source and destination by taking distance and

number of hops between them into account in a proactive

way and utilized Ka-band satellite link. This protocol turns

its mode to reactive to avoid routing overhead in the case

of error reporting alone. The Geographic Load Sharing

Routing (GLSR) approach extends Greedy Perimeter

Stateless Routing (GPSR) protocol for wireless networks,

where the packets are forwarded to geographically closest

neighbor of destination (Karp and Kung 2000; Medina

et al. 2008). They have attempted to reduce packet loss by

calculating the relative distance between source and

neighbor toward destination. Gu et al. (2012) proposed

DMDR, which is reactive and derived from the DSR

routing protocol. They have concentrated on overwhelming

conditions of aircraft, and tried to eliminate it by observing

the expected queuing delay of next-hop and Doppler shift

of the nodes aims at load sharing and based on the Doppler

shift (relative velocity of nodes) and expected queuing

delay of the nodes in moderate and high-density AANET.

PLAR (Zhong et al. 2016) routing suggested extending the

link availability duration by using the aircraft densities

along with the topology construction methods. This pro-

tocol extended OLSR (Optimized Link State Routing) to

enhance the link availability time to achieve a lower

probability of link breakages when aircrafts have higher

velocities with too many assumptions of the dynamic

environment. Zhong et al. (2016) proposed hierarchical

space routing protocol (HSRP) to provide efficient and

reliable communication in AANET with the use of node

movement features. This protocol has been designed based

on the zone routing protocol (ZRP) for the mobile ad hoc

networks that works based on the zones of the node. ZRP is

a hybrid routing that combines both proactive (IARP) and

on-demand routing protocols (IERP), where IARP is a kind

of proactive link-state protocol that keeps track of the

routing information for nodes that are available inside the

zone.
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2.2 Domain-specific routing protocols

The routing protocols (Sakhaee et al. 2006a; Seung et al.

2010; Wang et al. 2013; Vey et al. 2017; Luo et al. 2017)

are AANET domain-specific. Sakhaee et al. (2006b) pro-

posed Multipath Doppler routing protocol (MUDOR) to

find stable routes between source and destination by using

Doppler shift of the nodes. Furthermore, in their subse-

quent work, the QoS issues have been considered along

with extending the link lifetime through various theoretical

analyses. AeroRP (Jabbar et al. 2009) is a domain-specific

geolocation-assisted routing protocol designed for dynamic

airborne ad hoc networks. This work used Active snooping

for the neighbor discovery phase, where the packets in the

medium are overheard to extract the location information

store in it. The TTI (Time to intercept) is the primary

metric used for selecting the next hop for packet transfer by

taking the location of the destination, and the predicted

location of the neighbors along with the velocity of the

nodes. However, the broadcast nature leads to network

congestion and network delay in packet delivery. Seung

et al. (2010) proposed Geographical Routing for A posi-

tion-based routing approach to cope up with the highly

dynamic nature of the network topology by extending the

Greedy Perimeter Stateless Routing (GPSR) designed for

MANET. The position of the moving aircrafts is periodi-

cally updated from a ground station, which incurred a

higher delay in packet delivery. In addition, the delay in

getting position information from the ground leads to

inaccuracies in next-hop selection. Shangguag Wang et al.

(2013) proposed a geographical routing approach by

employing a velocity-based metric for next-hop selection

to deal with the fast-moving nature of commercial aircraft

and the frequent topology changes. They have used ADS-B

system to enhance the performance of routing in terms of

routing overhead by replacing the traditional broadcasting

methods for neighbor discovery. Vey et al. (2017) proposed

a node density and trajectory path-based routing approach

named Node Density-Trajectory based Routing (NoDe-

TBR) for Aeronautical Ad-hoc Networks. It works by

splitting the regions into sub-regions as per the Voronoi

diagram and computes the geographical path between

source and destination by Fast-Forwarding method. Luo

et al. (2017) mainly focuses on the civil aviation require-

ments and attempted to achieve good performances in

terms the link durations, load balancing, and end-to-end

delay. The neighbor discovery has been done by flooding

the advertisement messages periodically. The routing

tables are updated based on the reply messages from the

neighbor. To avoid the congestion due to flooding of

advertisement messages, they followed an optimization

method with broadcast ID and IP address of the source

node.

2.3 Artificial intelligence and routing in wireless
networks

Artificial Intelligence (AI) is being applied in the wireless

communication and networking area for the past several

years for various aspects such as decision-making, inter-

ference mitigation, congestion avoidance, and network

management. In recent years, networking researchers have

been working to look into the power and importance of

deep learning by exploiting their learning abilities in

complex and dynamic environments in the wireless and

mobile networking domain (Ge et al. 2019). AI concepts

are capable of making a device intelligent by integrating

Machine Learning (ML) and Deep Learning algorithms

(DL). ML and DL are the subset of AI that enables the

system to learn from the environment and produces better

decisions by applying the learned model. DL is the

extension of ML, which can predict the environment on its

own without human interactions (Yahya et al. 2021; Saf-

dari Shadloo 2021; Yahya and Aghel 2021).

Buzzi et al. (2016) analyzed the need to employ deep

learning techniques for future wireless networks paradigm.

As the world goes into the digital revolution, the massive

number of connected devices to the internet urges inno-

vative technologies (Kato et al. 2019) for densifying the

infrastructures, antenna design, and energy-efficient net-

work management systems to attain 1000-fold perfor-

mances improvement in upcoming generation wireless

networks compared with the existing wireless paradigm.

Mohammadi et al. (2018) surveyed paradigm of applying

DL on IoT devices was reviewed and numerous approaches

to attain it were presented. In addition, they surveyed DL-

based fog and cloud infrastructures to support IoT appli-

cations and identified the key requirements, technical

challenges, and future research direction in integrating DL

for IoT applications. MAO et al. (2018) concluded that the

DL is more profitable in making wireless network man-

agement as intelligent in a complex wireless network with

a large number of nodes in terms of searching the routing

path and traffic load balancing. They have stated that, due

to its similarity with human brain activity in learning from

the dynamics, the multi-layered DL techniques such as

RNN, CNN learn from high-dimensional raw data to come

up with appropriate network behavior based on the analysis

of various network parameters such as packet loss rate,

delay, and signal-to-noise ratio.

Decisions on routing path selection must be efficient to

ensure the required level of Quality of Service. DL started

to be utilized in the network routing field to improve the

efficiency of routing rules (Komeilibirjandi et al. 2020). To
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make energy-efficient routing, Assaf et al. (2016) used

Multi-Layer Perceptron in WSNs, in the aspect of facili-

tating pollution monitoring. They used neural networks for

providing efficiency threshold value and dynamically

changes nodes that consume minimum energy than resulted

threshold, thus improving energy efficiency. Qingchen

Zhang et al. (2017) proposed a 3-layered deep neural net-

work for node degree based on the provided information of

the routing nodes. The classification results have been

obtained for a temporary route that is further used for

virtual route generation by using the Viterbi algorithm.

Valentin Radu et al. (2016) employ Deep Belief Network

(DBN) for choosing the next forwarding nodes and con-

structed a software-defined router. They achieved up to

95% of accuracy by utilizing the OSPF (Open Shortest

Path First) as the optimal routing strategy. In their further

attempt, tensors have been used to represent weights, bia-

ses, and the hidden layers of DBNs, by which they attained

still more improved performance in routing.

3 Network model

This section describes the modeling of AANET. The net-

work consists of ‘N’ number of moving aircrafts, each with

half-duplex transceivers on a shared channel. An aircraft

node is identified by its unique number i [ {N1,…, Nn}. A

communication link between node i and j is represented as

Lij. Each aircraft is equipped with 1090 ES ADS-B In/Out

systems which broadcast its position, velocity, and identity

information to nearby aircrafts every half-seconds. Air-

crafts are moving in various levels, namely (l1, l2,…,ln)

both in the same and opposite directions. This work con-

siders the neighbor nodes flying in the same direction, as

the aircrafts flying in opposite directions are not reliable

due to the great impact of the Doppler shift (Gu et al.

2012). As per the standards of ICAO, the airspace is sep-

arated into multiple height levels below and above 29,000

ft. The separation between two neighboring levels is 600 m

below 29,00ft and 300 m above 29,000 ft. All aircrafts

flying in the same direction on the cruise stage are dis-

tributed in different levels as per the guidelines of ICAO.

Figure 3 shows the distribution of flying aircrafts at dif-

ferent levels. The separation between two neighboring

levels is denoted by ‘h,’ and ‘k’ denotes the total number of

height levels. Two aircrafts can communicate with each

other only if the distance between them is smaller than

their communication range ‘R’, which is the same for all in

this work.

The entire network imitates the Gauss-Markov model

(Maakar et al. 2018) with ICAO separation standards with

three dimensions. This model nearly depicts the real

movement of aircrafts such as accelerate, decelerate, or

turn phase progressively. This model keeps track of the

current movement of a node to compute the next position

through Gaussian equations using average speed, direction,

and Gaussian random noise. At a fixed level of intervals

‘n’, the current speed ‘s’, direction ‘d’ and position of the

aircraft (x, y, z) are updated using Eqs. (1), (2), (3), (4) and

(5).

xn ¼ axn�1 þ ð1� aÞxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� aÞ2
q

xxn�1
ð1Þ

yn ¼ ayn�1 þ ð1� aÞyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� aÞ2
q

yxn�1
ð2Þ

zn ¼ azn�1 þ ð1� aÞzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� aÞ2
q

zxn�1
ð3Þ

speedn ¼ aspeedn�1 þ ð1� aÞsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� aÞ2sxn�1

q

ð4Þ

dirn ¼ adirn�1 þ ð1� aÞd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� aÞ2dxn�1

q

ð5Þ

where a- tuning parameter, s- mean speed, d- mean

direction, sxn�1
and dxn�1

are variables of Gaussian distri-

bution used for adding randomness to the model. The

variable a takes a value from 0 to 1. When a = 0, the model

becomes memoryless, and a = 1, the movement of aircrafts

is more predictable and imitates the cruise phase.

4 Proposed ANFIS based routing approach

The main aim of the proposed work is to enhance the QoS

level of routing in highly dynamic multi-hop AANET by

utilizing the deep learning concept. The problem of

attaining QoS enhancement in routing is twofold; one is the

metrics used for decision-making and the second is the

decision-making approach on the next-hop selection. The

poor design of these two steps leads to performance

degradation of the routing protocol. Some of the existing

Fig. 3 Mobility model of an AANET
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works (Zhong 2016; Jabbar et al. 2009; Luo et al. 2017 and

Sakhaee et al. 2006c) make the flooding of position

information messages for neighbor discovery through

Route Request Advertisement. In this work, ADS-B takes

part in neighbor discovery whereby the aircrafts, which are

in the transmission, range of the source is easily found with

their coordinates, speed, and direction. In the routing

metrics aspect, the link and node stability are mandatory

for ensuring successful packet delivery. Excluding any one

of these aspects also leads to poor network performance.

The relative distance between source and neighbor toward

an intended destination, relative speed, and queuing

capacity is used to assess the link and node stability in the

proposed systems. This work focuses on load balancing by

calculating the queuing delay of every neighbor to reduce

the packet loss rate. Moving toward managing the huge

flight traffic, applying conventional ways for finding the

appropriate next hop will be costly in terms of time and

computation. Training aircraft as intelligent for automati-

cally choosing the next hop in midst of need is a novel idea

of this proposed work. To the best of our knowledge, this is

the first work to make use of DL techniques in the field of

AANET routing. This proposed work consists of three

phases as shown in Fig. 4.

4.1 Neighbor discovery

4.1.1 ADS-B

ADS-B is a new aeronautic surveillance technology that

has been applied broadly around the world in recent years

(Strohmeier et al. 2014). ADS-B system consists of ground

infrastructures and onboard transponders. This system

provides two different services: ADS-B Out and ADS-B In

as shown in Fig. 5. The ADS-B Out service uses onboard

transponders to broadcast the aircraft position as well as

other important flight information periodically down to the

ground, or other interested receivers such as communica-

tion satellites and other aircraft. The ADS-B In service

allows aircraft to receive ADS-B messages from nearby

aircraft, and therefore to benefit from a clear understanding

of the surrounding traffic situation. ADS-B Out service has

been well developed in practical applications, as installa-

tion of qualified transponders has been mandatory in sev-

eral countries, while ADS-B In-service remains an

operational choice for airline operators. It has better pre-

cision, a higher refresh rate, and lower cost than traditional

secondary radar (Schafer et al. 2016). Therefore, it is

envisaged as a potential solution for air traffic surveillance

in the context of nowadays-growing traffic.

Three different categories of ADS-B are available,

namely 1090 MHz Mode S Extended Squitter (1090 ES),

Universal Access Transceivers (UAT), and VHF Data Link

Mode 4 (VDL Mode 4) (Lester 2007). The civil aircrafts

make use of 1090 ES ADS-B systems, while the general

aviation use UAT. In general, all geographical routing

protocols start with the neighbor discovery phase to gather

the eligible neighbors for packet forwarding to the desti-

nation. The existing routing methods adapt the beaconing

procedure to ensure the availability of nodes in their

transmission range. The identified neighbors are main-

tained in a table with the collected information by flooding

beaconing messages periodically. To keep the discovery

phase in higher accuracy, the beacon messages are kept on

flooding by the source within a shorter time duration that

results in higher traffic overhead and increases the end-to-

end delay. This drawback has been resolved in this work by

utilizing the ADS-B, which is GPS-enabled equipment

available in the aircraft.

This ADS-B module sends its own aircrafts information

such as position, speed, and unique identifier through its

Out module to nearby aircrafts with a time interval of one

second. The moving aircrafts receive this information

through In module and display in cockpit part. The smaller

frequency of time in updating the position information

ensures the accuracy of the neighbor table and drastically

reduces the traffic overhead. The physical layer specifica-

tion of ADS-B and AANET is different, thus there is no

interference between AANET data forwarding and ADS-B

message transfer.

4.2 Next-hop selection

ANFIS, one of the deep learning algorithms is used to

make decision-making on the next-hop selection within a

short time efficiently in this study. In addition, the routing

metrics for the next-hop selection must be framed in such a

way that they should account for the conditions of both

nodes and links available between source and destination.

The existing work partly focused on this aspect either in

node or in the link. In this work, both link stability between

source and destination and the node capacity in terms of

queuing delay for data forwarding is taken into account to

ensure the QoS enhancement. The routing metrics are

calculated as described below.

Fig. 4 Phases of ANFIS based routing

Toward in-flight Wi-Fi: a neuro-fuzzy based routing approach for Civil Aeronautical Ad hoc… 7407

123



4.2.1 Computation of the routing metrics

The source aircraft node of the packet is required to cal-

culate the routing metrics of neighbors such as distance

between the source and next hop, the distance between the

next hop and destination, relative velocities of the nodes,

and queuing delay of the neighbors to find the best next

hop.

4.2.1.1 Distance between nodes Euclidean distance for-

mula has been used to calculate the distance between two

nodes as shown in (6).

EDm;nðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxnðtÞ�
p

xmðtÞÞ2 þ ðynðtÞ � ymðtÞÞ2 þ ðznðtÞ
� zmðtÞÞ2

ð6Þ

where (xm, ym, zm) and (xn, yn, zn) are the positions of the

node m and n, at time instance ‘t’.

4.2.1.2 Relative velocities of the node The relative

velocity of two nodes ‘m’ and ‘n’ moving in same direction

as shown in Fig. 6 is calculated using Eq. (7)

RVm;n ¼ tmðtÞ � tnðtÞ ð7Þ

4.2.1.3 Queuing delay When a node is a common

neighbor to more than one node, a bottleneck situation may

arise as illustrated in Fig. 7. In such a situation, the node

may be unable to forward the packets as the node is

overwhelmed with too many packets in the queue, which

leads to packet dropping and network congestion. To avoid

this situation, the load is mitigated to nearby suit-

able neighbors by considering queuing delay by analyzing

the queuing system of aircraft.

This work assumes that the aircraft system is imple-

mented with multiple parallel servers, which has the fol-

lowing characteristics:

1. The arrival rate k and service rate l follow the Poisson

distribution.

2. The utilization factor is q ¼ k
l

According to the M/M/1 model, the queuing delay of a

node is calculated as,

Fig. 5 Working of ADS-B

system

Fig. 6 Relative velocities of aircrafts Fig. 7 Bottleneck situation in aircrafts
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Qn ¼
q2

1� q
ð8Þ

where q is the utilization factor. As per Little’s law, the

number of packets is directly proportional to the waiting

time.

In this work, ANFIS (Jang 1993) uses one input layer for

feeding inputs, two hidden layers for processing the fuzzy

rules, and one output layer for getting final crisp output as

shown in Fig. 8. The network is trained with network

moving scenarios and varying densities. The ANFIS

attempts to find the next-hop with different combinations

of distance, speed, and queuing delay. Upon receiving the

fuzzy rules from the fuzzy inference module, the weights

are adjusted in Layer-3 for normalization. The normaliza-

tion helps to speed up the training of ANFIS, thus results in

faster convergence. The normalized fuzzy rules are fed as

input to the next layer, where defuzzification is done to get

the final output. To find the next hop, the rules are framed

by refining through the hidden layers of ANFIS by ana-

lyzing the different routing patterns of AANET.

Layer 1: Fuzzification

After calculating the routing metrics, the linguistics

variables are framed as shown in Table 1. by analyzing

patterns of the dynamic variations of the metrics with

trapezoidal and triangular membership functions.

The triangular membership function is defined as,

lA xð Þ ¼

0; x� a
x� a

b� a
; a� x� b

c� x

c� b;
b� x� c

0; x� c

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

ð9Þ

The trapizoidal membership function is defined as,

lA xð Þ ¼ max min
x� a

b� a
; 1;

d � x

d � c

� �

; 0

� �

ð10Þ

The nodes in this layer are adaptive and the aforemen-

tioned membership functions are applied over the routing

metrics using (9) and (10). The output of this layer is in

form as shown in (11)

O1;i ¼
lAi�2ðxÞ; for i ¼ 1; 2
lBi�2ðyÞ; for i ¼ 3; 4

�

ð11Þ

In this work, the value of i is five for all the inputs. Ai

denotes the linguistic variable assigned to the routing

metrics (such as Nearest, Far, Less and more).

Layer 2: Fuzzy rule formation

In Layer-2, the fixed nodes are labeled as p and each

node performs fuzzy operation AND to fuzzify the given

inputs (x, y). In this work, four inputs are used, namely

distance between source and next hop, the distance

between next-hop and destination, relative speed, and

queuing delay. The output of this layer is named as firing

strength of the fuzzy rules as it helps to conclude the

precise output by reasoning the given inputs. It is repre-

sented as shown in (12),

O2;i ¼ wi ¼ lAiðxÞ � lBiðyÞ; i ¼ 1; 2 ð12Þ

The formed fuzzy rules are in the form as described as

follows:

Rule 1ð Þ : IF x isA1 AND b is B1; Then F1 ¼ r1a þ s1b þ t1

Rule 2ð Þ : IF y isA2 AND b is B2; Then F2 ¼ r2a þ s2b þ t2

ð13Þ

where, x, y are the inputs, A1, B1 are the fuzzy sets, Fi is the

outputs of the fuzzy rule, ri, si, ti are design parameters that

are decided in the course of the training. According to

Fig. 8 Typical ANFIS Layered Architecture
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patterns of the routing metrics, the fuzzy rules are formed

as shown in Table 2.

Layer 3: Normalization

In Layer-3, nodes are fixed labeled as ‘N’ as it involves

with normalization role to fire the strength to the next layer.

The output of the layer is denoted as,

O3;i ¼ wi ¼
wi

w1 þ w2

; i ¼ 1; 2 ð14Þ

Each node calculates the ratio of firing strength of its

own rule with the sum of all rule’s firing strength.

Layer 4: Aggregation

Table 1 Linguistic variables
Crisp input Linguistic variables Membership function

Dist (S,Neigh) & Dist (Neigh, D) 0–20%: Nearest Trapmf

15-35a% %:Medium Nearest Trimf

35–45%: Medium

45–70%: Less Far

70–100% Far Trapmf

RV & QC 0–15%: Very Less Trapmf

15–30%: Less Trimf

30–45%: Average

45–67%: More Average

67–100%:More Trapmf

Table 2 Fuzzy rules
Dist.(S, Neigh) Dist.(Neigh, D) RV QC Next hop choice

Nearest Nearest Very Less Very Less Very Strong

Nearest Nearest Very Less Less Strong

Nearest Nearest Very Less Average Less Strong

Nearest Nearest Very Less More Average Highly Medium

Nearest Nearest Very Less More Medium

Medium Nearest Medium Nearest Very Less Very Less Less Strong

Medium Nearest Medium Nearest Very Less Less Highly Medium

Medium Nearest Medium Nearest Less Very Less Strong

Medium Nearest Medium Nearest Less Less Less Strong

Medium Nearest Medium Nearest Less Average Highly Medium

Medium Nearest Medium Nearest Less More Average Medium

Medium Nearest Medium Nearest Less More Less Medium

Medium Medium Nearest Very Less Very Less Strong

Medium Medium Nearest Very Less Less Less Strong

Medium Medium Nearest Less Very Less Highly Medium

Medium Medium Nearest Less Less Medium

Medium Medium Nearest Less Average Less Medium

Medium Medium Very less Very less Highly Medium

Medium Medium Average Very Less Medium

Medium Medium More Average Less Less Medium

Medium Medium More Average Less Weak

Medium Medium More More Average Weak

Medium Less Far Average Average Less Weak

Less Far Less Far Average Average Less Weak

Less Far Less Far Average More Average Weak

Far Far More Average More Average Less Weak

Far Far More More Very Weak
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In Layer-4, nodes are adaptive where each adaptive

node produces output as the product of normalized firing

strength from the previous layer as shown in (15),

O4;i ¼ wifi ¼ wi rixþ siyþ tið Þ; i ¼ 1; 2 ð15Þ

Layer 4: Defuzzification

In Layer-5, the fixed node labeled as R performs a

summation of all inputs from the previous layer. The step

deals with centroid defuzzification of the previous layer

output and expressed as,

O5;i ¼ R
i
wfi ¼

P

i wifi
P

i wi
ð16Þ

Finally, Reachable Time (RT) is observed from ANFIS

for all the neighbors identified in the neighbor discovery

phase. A neighbor with a less RTi value is chosen as the

appropriate next hop for packet forwarding.

RTi ¼
X

N

i¼1

minðO5;iÞ ð17Þ

4.3 Data forwarding

When an aircraft has data to send, it searches for the eli-

gible neighbors from ADS-B messages as described in

(Sect. 4.1). The aircraft which is more optimum to forward

the data to its intended destination identified by the deep

learning assisted next-hop selection in (Sect. 4.2). The data

are forwarded through the identified neighbor as per the

procedure mentioned below in Fig. 9.

5 Results and discussion

The proposed work was simulated with real-time ADS-B

datasets collected from Open Sky Network, which aims to

provide live aircraft information. The simulation parame-

ters for routing are shown in Table.3. This work evaluates

the network performance concerning the node distribution

of nodes, namely Sparse and Dense networks. The

observed routing metrics, namely, the distance between

source and next hop, the distance between next-hop and

destination, relative speed, and queuing delay are fed as

inputs to the fuzzy inference module to get fuzzified out-

put. The linguistic variables of the input variables are

discussed in the previous section. For all routing metrics,

the lower and higher values of linguistic variables have

been calculated by using trapezoidal membership functions

to filter the best and worst options with wider coverage.

The middle values of linguistic variables are calculated

based on the triangular membership functions to accurately

pick the aircrafts in moderate capacity. Due to the nature of

easy computation and suitability to real-time implementa-

tions, these two membership functions have been used

here. For each routing metric, lower and upper bound are

computed by applying trapezoidal membership functions

and the intermediate values are calculated by using trian-

gular membership functions. Figure 10 shows the linguistic

values for the distance between source and neighbor and

neighbor to destination. The fuzzy set values are Nearest,

Medium Nearest, Medium, Less far, and Far. Figure 11

shows the linguistic values for the Relative Velocity,

namely Very Less, less, More Average, More. Figure 12

shows the linguistic values for the Queuing Capacity,

namely Low, Average Low, Average, More Average,

More. Figure 13 shows the linguistic values or the Member

Choice, namely Very Weak, Weak, Less Weak, Less

Medium, Medium, High Medium, Less Strong, Strong, and

Very Strong. Figure 14 shows the Neuro-Fuzzy approach

followed by the proposed work for approximating nonlin-

ear functions. This model takes one input and produces

output for the next layer. Figure 15 shows the distribution

of moving aircrafts in the simulation area.

The impact of communication range in average time to

link breakage is shown in Fig. 16. This figure depicts how

reliable the proposed method when increasing the com-

munication range and helps to identify the optimal com-

munication range in civil AANET. The smaller

transmission range exhibits greater link interferences in the

network due to which the link fails too shortly. The relia-

bility measures how much time the link is available

between two pairs of nodes. When the communication

range is very less, the possibilities of having interference

are very high, which will negatively impact packet trans-

mission. When the transmission range is extended, the

number of nodes for packet forwarding will be more. This

reduces the congestion and interferences among links,

which increases the time for link breakages. When the

transmission range goes beyond 300 km above, the time

links take to break gradually increases with any number of

nodes. In contrast, the link existence between pairs of

aircrafts is shown in Fig. 17. The higher transmission range

and the larger number of nodes help to retain the links

among nodes and possibly reduce the number of relays or

hops to reach the destination.

5.1 Proposed method evaluation

The performance of the proposed approach is evaluated

under varying packet sizes and packet inter-arrival rate in

dense civil AANET, where nodes are thickly scattered. As

shown in Fig. 18a–c, the packet size varies from 128 to

1024 Kbytes. Generally, the small packets consume less

amount of time for complete transmission, also able to

cover larger distances. Because of the dense nature and
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high transmission range with more reliable links as shown

previously, the e2e delay is greatly reduced. The reason is

source and destination can reside between the large com-

munication range (R = 500 km), hence reduces the end-to-

end delay. Increasing the packet sizes leads to more pro-

cessing at each hop, specifically in a dense environment,

which results in more end-to-end delay. Therefore, the

1024 KB packets lead to a 230 ms end-to-end delay on

Fig. 9 Pseudo code for data

forwarding

Table 3 Simulation parameters

Parameters Values

Simulation Area 500 9 50 km

PHY Layer IEEE 802.11 a

CBR Packet Size 4096 Kbits

CBR sending rate 200 kbps

Propagation model Free Space

Transmit power 51 dBm

SNR Threshold 6 dBm

Antenna Used Omni Directional

Path Loss Model Free Space

Average Speed 250 m/s

Simulation Time 15 min

Fig. 10 Linguistic values for distance between Source and neighbor

Fig. 11 Linguistic values for relative velocity

Fig. 12 Linguistic values for queuing capacity

Fig. 13 Linguistic values for member choice
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average when the packet inter-arrival time goes beyond 4

secs as shown in Fig. 18a. In the case of traffic overhead,

the ADS-B module of the proposed work plays a significant

role in drastically reducing the traffic overhead. Due to this,

the QoS performance in terms of overhead is improved

considerably. For instance, with short packet inter-arrival

time and small packet sizes, the overhead is increasing

gradually and takes an average overhead of 2.7 Mb/s in

dense civil AANET as shown in Fig. 18b. With huge

packet sizes also, the overhead is slowly increased which

produces significant outcomes in the proposed QoS rout-

ing. The QoS in terms of PDR under different packet sizes

Fig. 14 Neuro-Fuzzy process of proposed approach

Fig. 15 Distribution of aircrafts
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is shown in Fig. 18c. Generally, in a congested medium,

increasing the packet sizes leads to decrease PDR. To cope

up with this situation, this method considered the possible

cause of congestion as mentioned earlier. Hence, increas-

ing the packet sizes and inter-arrival time shows less dif-

ference in PDR when compared with small packet sizes.

Fig. 16 Average time to link

break

Fig. 17 Link duration between pairs of aircrafts
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The evaluation of the proposed approach under three

different network scenarios (sparse, moderate, and dense

civil AANET) has been carried out and shown in Fig. 19.

In the sparse AANET, the nodes are thinly scattered and

fewer nodes exist inside the communication range. In the

case of moderate civil AANET, a considerable amount of

nodes could be inside the communication range, whereas in

the dense AANET, the nodes are thickly scattered. All

three different scenarios have the same transmission range

with the different random distributions of nodes. Connec-

tivity plays a major role in networks with different node

distributions (Liu et al. 2015). In a dense network, nodes

are thickly connected, which indirectly means that the

network is connected always. As a result, possibilities of

the source and destination pair existence inside the trans-

mission range have a high probability. This leads to better

QoS performances in terms of PDR, traffic overhead, and

end-to-end delay in a dense network. The reasons are first,

the possible congested nodes are identified and neglected to

be next hop by the proposed work, hence packets drops are

reduced. Second is, the ADS-B based neighbor discovery

aids in improving the accuracy of overall routing through

the update of the global state of the network every second.

The third is the hybrid learning method of the neuro-fuzzy

method finds the accurate relay nodes with sufficient

resources. In moderate civil AANET, the probability of

connectivity is 0.5, which means there are link breakages

due to which PDR, traffic overhead, and end-to-end delay

are affected as shown in Fig. 19a–c. Hence, the possibili-

ties of suitable relays nodes are less than the dense net-

work. As a result, the moderate network exhibits average

QoS performances. In a sparse network, the network is

highly disconnected because of the unavailability of links

among nodes. Due to insufficient resources, routing in a

sparse network degrades QoS performances in terms of

PDR and end-to-end delay. Simultaneously, less overhead

is experienced as less number of nodes inside the

Fig. 18 QoS performances with varying packet sizes
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transmission range. The neuro-fuzzy model refines the

result with less accuracy with the small number of data.

5.2 Comparative analysis of proposed
with existing methods

The proposed method compares QoS performances with

existing methods A-GR (A novel Geographic Routing) and

GRAA (Geographic Routing Protocol for Aircraft Ad hoc

Networks) in terms of packet delivery ratio, end-to-end

delay, traffic overhead concerning the increasing number of

nodes, packet inter-arrival time. Figure 20a, b illustrates

the proposed method’s QoS performances in terms of

packet delivery ratio (PDR) concerning increasing the

number of nodes. In the dense network shown in Fig. 20a,

all the routing protocols (proposed, A-GR and GRAA) face

difficulty when the number of nodes increases. Amid the

increasing crowd, the proposed approach achieves a higher

packet delivery ratio up to 69% which is higher than A-GR

and GRAA in a stable manner even after with increasing

nodes as the Neuro-fuzzy module classifies the scenarios

well with larger dataset size and fairy allocate loads to

nodes. Due to the lack of queue management aspects in the

existing approach, their PDR is suddenly reduced when the

number of nodes started increasing. In the case of A-GR,

ADS-B assistance is utilized for accomplishing neighbor

discovery, it also shows a stable increase in PDR than

GRAA but lesser than the proposed approach. The GRAA

follows the broadcasting of messages to collect the

neighbor information; it starts to degrade in its PDR as the

number of nodes reaches 55 as all the nodes periodically

broadcast the beacon messages. In addition, the network is

easily congested with its broadcasting nature has no facility

Fig. 19 QoS performances with different network densities
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to relaxing the bottleneck situation; it fails to achieve

greater PDR.

The sparse network shown in Fig. 20b leads to poor

PDR when employing all the routing protocols due to the

nature of scatterings of node distribution. The proposed

approach exhibits a slow increase in PDR even with an

increasing number of nodes. Nevertheless, the accuracy of

Neuro-Fuzzy with an increasing number of data samples

helps to predict the optimal path, as a result, it can attain a

higher 65% PDR comparing with the existing approach. In

contrast, A-GR achieves considerable PDR than GRAA

due to the accuracy of ADS-B assisted neighbor discovery

phase. The GRAA starves to achieve PDR as it relies on the

traditional way for collecting neighbor information that

often produces inaccurate data, as the nodes are highly

mobile.

Figure 21a and b shows the proposed method’s QoS

performances in terms of end-to-end delay concerning

increasing the number of nodes. In the context of end-to-

end delay, the Neuro-Fuzzy approach shows lesser end-to-

end delay than A-GR and GRAA due to the intelligent

decisions made by each node on the optimal selection on

next hop on receiving the accurate position, speed, and

direction information. With the increasing number of

nodes, NFRP finds more options to find a suitable neighbor

that aids to deliver the packets in less time. However, when

nodes are below 80, NFRP shows increased delay than

A-GR. In the case of A-GR, its delay is overlapped with the

proposed work when the number of nodes is less. When the

number of nodes starts to increase, the delay in A-GR also

starts to increase because of the non-availability of the load

balancing mechanism, whereas GRAA shows a gradual

increase in its end-to-end delay. In a sparse scenario, the

delay is considerably increased for all the routing protocols

due to the scarcity of neighbors. In addition, due to link

unavailability or highly disconnected nature leads to poor

performance in finding the next hop, which in turn greatly

increases the overall end-to-end delay in all the methods.

However, the neighbor discovery phase and the consider-

ation of congested nodes the proposed method helps to

improve the end-to-end delay.

Figure 22 shows the QoS performance of the proposed

method in terms of traffic overhead with an increasing

number of nodes. In the simulation, routing overhead

includes the position, velocity information of neighbors,

and beacon messages used for neighbor discovery. As

NFRP and A-GR assisted with the ADS-B module, it

shows lesser overhead than GRAA. In the proposed

method, every node broadcasts its position and velocity

information through their ADS-B Out module and ADS-B

In modules receives the nearby neighbors every second.

Hence, the global state of the network is updated accurately

without any need for beacon messages. This module helps

to attain appropriate next-hop with lesser overhead com-

pared with existing methods. The NFRP shows very less

routing overhead than A-GR as the load balancing mech-

anism. Due to the lack of advanced methodologies for

neighbor discovery and load balancing GRAA gives higher

overhead than A-GR and proposed work. In a sparse net-

work scenario, all the routing approaches result in reduced

overhead than that of a dense network as the neighbors

within the transmission range will be very less with poor

routing capabilities. Hence, few nodes are probable to take

part in forwarding. However, with the aid of intelligent

decisions, the proposed work can find an appropriate hop

Fig. 20 QoS performances in terms of PDR concerning the number of nodes a Dense network Scenario, b Sparse network Scenario
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toward a destination without accumulating the packets

anywhere in between source and destination.

5.3 One-way ANOVA statistical test

One-Way ANOVA (Analysis of Variance) has been carried

to draw the conclusion, where the Null Hypothesis and

Alternative Hypothesis are clearly shown below the table.

Sparse and dense network scenarios are taken into account

to derive the conclusion of the QoS performances as sparse

denotes highly disconnected, and dense denotes highly

connected network. The alpha value considers being 0.05.

Table 4 compares the proposed method’s performance

of QoS with A-GR, and GRAA methods in sparse network

scenario and dense network scenario. In a comparison of

sparse network scenario, the PDR of the proposed method

has been improved by 11.29% compared to A-GR and

32.24% compared to GRAA. The end-to-end delay of the

proposed method has been reduced by 9.27% from the end-

to-end delay of the A-GR method and 12.81% from the

end-to-end delay of the GRAA method. The traffic over-

head of the proposed method has been reduced by 66.67%

from the traffic overhead of the A-GR method and 89.46%

from the traffic overhead of the GRAA method.

In a comparison of the dense network scenario, the PDR

of the proposed method has been improved by 9.06%

compared to A-GR and 26.83% compared to GRAA. The

end-to-end delay of the proposed method has been reduced

by 7.62% from the end-to-end delay of the A-GR method

and 19.74% from the end-to-end delay of the GRAA

Fig. 21 QoS performances in terms of end-to-end delay concerning the number of nodes a Dense network Scenario, b Sparse network Scenario

Fig. 22 QoS performances in terms of traffic overhead concerning the number of nodes a Dense network Scenario, b Sparse network Scenario
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method. The traffic overhead of the proposed method has

been reduced by 34.03% from the traffic overhead of the

A-GR method and 81.44% from the traffic overhead of the

GRAA method. The overall ANOVA statistical test results

are listed in Table 5 for both sparse network scenario and

dense network scenario.

The statistics test finalizes that the conclusion can be

drawn as the methods are significantly different in all the

QoS parameters considered. In addition, the empirical

correlation analysis depicts the strength and the direction of

the relationships among the parameters. Table 6 describes

the strength of the correlation coefficients, where the pos-

sible correlation coefficients range from = 1 to - 1.

6 Conclusion

Cellular-based AANET can be used as an alternative

communication system for satellite-based AANET over

remote or oceanic regions to realize In-Flight Wi-Fi. The

distinguishing features of AANET such as higher mobility,

frequent topology changes, node distribution, limited

bandwidth, and the drastic growth of air traffic urge the

researchers to come up with efficient as well as intelligent

decision-making in the course of routing to ensure the

quality of service. For capturing the reality of moving

aircrafts, ICAO separation standards are incorporated in

Gaussian mobility modeling. In this work, one of the deep

learning techniques called ANFIS is employed for effi-

ciency and intelligence in the routing process. A comple-

mentary system of radar called ADS-B is used in the

neighbor discovery phase. The neighbor information is

updated every second in moving aircrafts through the In/

Out mode of ADS-B, thus ensures accuracy in location

information of fast-moving aircrafts. The routing metrics

play a vital role in selecting the next-hop to achieve greater

performance in routing. This work takes four metrics,

namely distance between source to the neighbor, the dis-

tance between neighbor to destination, the relative speed

between source and neighbor, and the queuing delay of the

neighbor into account. To avoid the situation of over-

whelming nodes, queuing delay is considered in this work.

The fuzzification step produces the linguistics values for

routing metrics, followed by fuzzy rules are framed. The

process of refining fuzzy rules is done in hidden layers of

the ANFIS method and then the centroid defuzzification is

applied to get the final output. The results section shows

the effect of updated Gaussian mobility modeling in terms

of the average time for link breakages and link availability

between pairs of source and destination aircrafts and per-

formance of the proposed routing protocols in terms of

packet delivery ratio, end-to-end delay, and traffic over-

head with varying packet sizes and packet inter-arrival

time. The proposed method has maximum improvement in

PDR, end-to-end delay, and traffic overhead of 32.24%,

19.74%, and 89.46%, respectively, in comparison with

GRAA. And in comparison with A-GR, the proposed

method has improvement in PDR, end-to-end delay, and

traffic overhead of 11.29%, 9.27%, and 66.67%, respec-

tively. This is a notable improvement in civil AANET. As

increasing the accuracy of the system, the computational

complexity also increases proportionally, which is the

limitation of this work. More routing metrics and fuzzy

rules will make the system computationally complex,

results in higher accuracy. This method is highly advan-

tageous in complementary civil AANET for QoS routing

Table 4 Descriptive statistics

PDR E2e delay Traffic overhead

Sample size Mean SD SE of Mean Mean SD SE of Mean Mean SD SE of Mean

One-Way ANOVA Statistical Test in Sparse Network

Proposed 10 62.90 1.75 0.55 442.30 64.23 20.31 0.35 0.14 0.04

A-GR 10 55.80 3.87 1.22 487.50 85.54 33.89 1.06 0.58 0.18

GRAA 10 42.62 1.14 0.36 507.30 104.95 56.86 3.34 1.59 0.50

PDR E2e delay Traffic overhead

Sample size Mean SD SE of Mean Mean SD SE of Mean Mean SD SE of Mean

One-Way ANOVA Statistical Test in Dense Network

Proposed 10 67.36 1.51 0.77 270.60 20.41 6.45 1.87 0.86 0.27

A-GR 10 61.26 3.86 1.22 292.92 46.79 14.80 2.84 1.28 0.41

GRAA 10 49.29 11.62 3.67 337.13 78.74 24.90 10.08 6.54 2.07

*SD, Standard Deviation; SE, Standard Error
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because of the capability of dealing with increasing air

traffic.

In the future, the work will be extended in the following

directions,

i. Cross layered approach is to be adapted by coupling

the Network and MAC layer, where the channel

allocation and routing will be combined to properly

utilize channels.

ii. Software-Defined Networking (SDN) for monitoring

the state of the AANET properties concerning the

QoS requirements of the corresponding applications.

Also, it manages the forwarding of data packets to

flows according to the service priorities.

iii. Investigation on QoS routing optimization problems

and e-constraint multi-objective optimization will be

employed by considering the tradeoff among con-

flicting parameters of AANET.
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