
VLSI implementation of an area and energy efficient FFT/IFFT
core for MIMO-OFDM applications

Konguvel Elango1
& Kannan Muniandi1

Received: 25 January 2019 /Accepted: 1 December 2019
Institut Mines-Télécom and Springer Nature Switzerland AG 2019

Abstract
This research article presents an implementation of high-performance Fast Fourier Transform (FFT) and Inverse Fast Fourier
Transform (IFFT) core for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM)-based
applications. The radix-2 butterflies are implemented using arithmetic optimization technique which reduces the number of
complex multipliers involved. High-performance approximate multipliers with negligible error rate are used to eliminate the
power-consuming complex multipliers in the radix-2 butterflies. The FFT/IFFT prototype using the proposed high-performance
butterflies are implemented using Altera Quartus EP2C35F672C6 Field Programmable Gate Array (FPGA) which yields 40% of
improved logic utilization, 33% of improved timing parameters, and 14% of improved throughput rate. The proposed optimized
radix-2-based FFT/IFFTcore was also implemented in 45-nmCMOS technology library, using Cadence tools, which occupies an
area of 143.135 mm2 and consumes a power of 9.10 mW with a maximum throughput of 48.44 Gbps. Similarly, the high-
performance approximate complex multiplier-based optimized FFT/IFFT core occupies an area of 64.811 mm2 and consumes a
power of 6.18 mW with a maximum throughput of 76.44 Gbps.

Keywords FFT . IFFT . Decimation In Time (DIT) . Approximate multipliers . MIMO-OFDM

1 Introduction

Fast Fourier Transform (FFT) and its Inverse (IFFT) play a
vital role in telecommunication based applications such as
optical OFDM, massive/cooperative/multi-user multi input
multi output (MIMO), and MIMO in 5G. The contemporary
improvements in telecommunication technologies require
several features and standards that to be supported in a single
integrated MIMO OFDM chip. Particularly, since the FFT
(and IFFT) is one of the principal components in OFDM
baseband processor, it is essential to develop a low power-
area-delay fast Fourier transform processor that supports vary-
ing FFT/IFFT sizes (data points) for MIMO-OFDM based
telecommunication systems.

Awide range of architectures and optimized algorithms for
efficient implementation of FFT/IFFT computational units
have been proposed in the literature over the past few decades,
which can be categorized into sequential (memory-based) and
pipelined. Although sequential architectures provide low-
delay solution, it requires more area and consumes more pow-
er for the implementation of complexmultipliers present in the
basic butterfly units. Multipath delay commutator (MDC) and
single-path delay feedback (SDF), which are the major
pipelined FFT algorithms, provide high-throughput in spite
of that it occupies more hardware resources.

The Decimation-In-Time (DIT) as well as Decimation-In-
Frequency (DIF) butterfly structures, which forms the basic
unit of FFT (IFFT), comprises of complex adders and com-
plex multipliers as the key components. Real-time implemen-
tation of complex multiplication is of high complex when
compared with that of complex addition. Hence, optimization
in terms of complex multiplication or arithmetic flow in DIT/
DIF butterfly structure or both enhance the efficiency of real-
time implementation of FFT/IFFT computations.

Adder-compressors used in the radix-2 basic DIT butterfly
structure to implement FFT algorithm that consumes low
power is presented [1]. Partial column radix-2 and radix 2/4
butterflies are used in designing energy-efficient FFT

* Konguvel Elango
konguart08@gmail.com

Kannan Muniandi
mkannan@annauniv.edu

1 Department of Electronics Engineering, Madras Institute of
Technology Campus, Anna University, Chennai 600004, India

Annals of Telecommunications
https://doi.org/10.1007/s12243-019-00742-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-019-00742-6&domain=pdf
mailto:konguart08@gmail.com

computational unit [2]. Radix-2m-bits encoding scheme was
used to reduce the partial product lines in the multiplication
so as to design a low power FFT processor [3]. Distributed
arithmetic based approach is proposed in order to perform
multiplier less FFT architecture [4]. Mixed radix butterflies
(radix-2 and radix-2/4) were used to implement the FFTwhich
has less memory access than conventional algorithm [5]. Split
radix FFT architecture which has shared memory architecture
with clock gating was presented in [6]. Radix-2/22/3-based
partial cached FFT processor was designed for low-energy
3rd Generation Partnership Project (GPP) – Long-Term
Evolution (LTE) applications [7]. A mixed pipelined/cached
128- to 1024 point FFT using power-aware twiddle factor
multiplication was designed for Orthogonal Frequency
Division Multiple – Access (OFDMA) [8]. To minimize the
complexity in twiddle factor complex multiplication, a radix-
24/22/23-based MDF FFT architecture is proposed which is
optimal for IEEE 802.16e applications [9]. A 2.4 GS/s eight-
data path-pipelined FFT processor was presented for Wireless
Personal Area Network (WPAN) applications [10]. Mixed
Generalized High Radix (GHR) FFT algorithm uses 2D and
1D FFT factorization methods to reduce the area utilization.
Computational speed and hardware efficiency are improved,
since this method endures eight radices and 34 different FFT
lengths [11]. 1536-point FFT computation is achieved with
variable length FFT processors [12] that suffers high latency
and increased hardware utilization. A 16-bit 64-point sequen-
tial algorithm-based 1-dimensional (1D) FFT architecture re-
sults in an area efficient, high-speed processor suitable for
Wireless Local Area Networks (WLAN) [13]. A low-power
64-point pipeline FFT processor based on radix-43 butterflies,
achieving 25% clock rate minimization than traditional FFT
architectures, targeting IEEE 802.11a/g applications, is pro-
posed [14].

Designing a power and energy-efficient MIMO-OFDM in-
tegrated chip is foremost concern in this advanced telecom-
munication technological era. Approximate arithmetic com-
putation appears to be the effective solution for the systems
that exhibits an intrinsic error tolerance. The computational
errors arising because of approximation can be considered as
trade-off for the significant gains in power and area.

Approximate multipliers are focused in this work rather
than approximate adders since multiplication involves much
complexity. In approximate complex multiplication, the ap-
proximation can be applied in the partial product accumula-
tion [15] and also in partial product generation stages or in
both [16]. Approximate 4–2 compressors are used in partial
product generation of 8 × 8 Dadda multiplier ends in non-zero
outputs for zero inputs which affects the mean relative error
(MRE) [17]. A Karnaugh-map entry is modified in a 2 × 2
complex multiplier, which is used to build 4 × 4 and 8 × 8
complex multipliers [18]. An approximate 4:2 counter design
is used in building the blocks of Wallace tree multiplier that
has a maximum error % of 13.76 [19]. The usage of compres-
sors and compressor-adders in complex multipliers reduces
the power consumption and has good area efficiency as well
[20]. Different sizes of approximate compressors were used in
building the multiplier using an algorithm that allocates the
compressors with minimum error [21]. Modified approximate

Table 1 Computational
complexity for the direct DFT
computation and FFT algorithm

Number of data
points N

Direct computation FFT algorithm

Complex
multiplications

N2

Complex
additions
N(N-1)

Complex multiplications
(N/2)log2N

Complex additions
Nlog2N

8 64 56 12 24

16 256 240 32 64

32 1024 992 80 160

64 4096 4032 192 384

128 16,384 16,256 448 896

256 65,536 65,280 1024 2048

512 262,144 261,632 2304 4608

1024 1,048,576 1,047,552 5120 10,240

2048 4,194,304 4,192,256 11,264 22,528

4096 16,777,216 16,773,120 24,576 49,152

8192 67,108,864 67,100,672 53,248 106,496

Fig. 1 Radix-2 DIT butterfly

Ann. Telecommun.

compressors are used in order to design a low-power and high-
speed multiplier with minimum error values [22].

In this paper, two major contributions are discussed. First,
8- and 16-point DIT based fast Fourier transform (FFT) algo-
rithm based on arithmetic optimization is proposed. Second,
8- and 16-point DIT based FFT algorithm using approximate
complex multiplication is proposed.

The organization of the paper is as follows. A brief intro-
duction to FFT algorithms is given in Section 2. Arithmetic
optimization-based DIT-FFT computations are discussed in
Section 3. Approximate complex multiplier-based radix-2
DIT butterfly is discussed in Section 4. Comparative result
analysis and discussions of the proposed FFT/IFFT processor
designs are given in the Section 5 and concluding remarks and
future suggestions are detailed in Section 6.

2 FFT—preliminaries

The Discrete Fourier Transform (DFT) and its Inverse (IDFT)
of N-point discrete time data sequence can be given as,

X kð Þ ¼ ∑
N−1

n¼0
x nð Þe− j2πkn=N ; 0≤k≤N−1 ð1Þ

x nð Þ ¼ 1

N
∑
N−1

k¼0
X kð Þe j2πkn=N ; 0≤n≤N−1 ð2Þ

The DFT and IDFT of any given discrete time sequence of
length N are X(k) and x(n) respectively. From the above Eqs.
(1) and (2), it is clear that n and k are nth and kth samples of N
data points, where Nmay vary from 8 to 8192 points which is
subjected to the specific application. The exponential term
given in Eqs. (1) and (2) represents the twiddle factor needed
for stage-wise FFT/IFFT computations, which are the equally
spaced time/frequency samples. Mathematically, twiddle fac-
tor WN can be represented as,

WN ¼ e− j2π=N ð3Þ

The direct implementation of DFT (or IDFT) requires N2

complex multiplications and N(N-1) complex additions,
where N is the length of data sequence. Divide and Conquer
approach, FFTand IFFT, proposed by Cooley and Tukey [23],
considering the periodicity and symmetric properties of twid-
dle factorWN, reduced the number of complex multiplications
to (N/2)log2N and number of complex additions to Nlog2N.
Table 1 provides the comparison of computational complexity
for direct DFT (or IDFT) computation and FFT (or IFFT)
algorithm for various data length N.

By Cooley and Tukey method, the length of input data
sequences, N is sub-divided into r1, r2, r3,… and so on, where
“r” is so-called the radix of FFT. The FFTalgorithmwith r = 2,
is referred as radix-2 FFT algorithm, which is the most prev-
alent one. But, radices ranging from 2 to 10 are also used
rarely based on its requirement. In single-radix FFT algo-
rithms, the size of input sequence N must be the power of
radix value. For example, with radix-8, length of data points
N in the FFT should be a power of 8. But, in mixed-radix or

Fig. 3 Conventional radix-2 DIT
butterfly structure

Fig. 2 Radix-2 DIF butterfly

Ann. Telecommun.

split-radix FFT algorithm, non-prime FFT length can be
decomposed into several prime factors. For example, an FFT
of length 1000 can be decomposed in 6 stages using
radices of 2 and 5 since 1000 = 2 × 2 × 2 × 5 × 5 × 5 or
4 stages using radices of 2, 5, and 10 since 1000 = 2 ×
5 × 10 × 10. This kind of basic r-point computation is
termed as the butterfly unit.

The decomposition of FFT length can be broadly classified
as decimation-in-frequency (DIF) and decimation-in-time
(DIT), depending upon the partition that takes place from
input and output data points respectively. The basic radix-2
butterfly diagram for DIT (Fig. 1) and DIF (Fig. 2) computa-
tions are shown below. It can be shown that A and B denote
the complex output from previous stage (or complex input to
the present stage) whereas C and D denote the complex output
of the present stage (or complex input to the next stage). The
twiddle factor is denoted as WN which is given in Eq. (3).

3 Arithmetic optimization for radix-2 butterfly

In FFT/IFFT computation, the butterfly structure plays a
vital role since it involves a significant number of com-
plex additions and complex multiplications. Therefore,
optimizing the butterfly structure in any means in turn
reduces the area utilization and power consumption of
the entire FFT/IFFT computation. The arithmetic optimi-
zation in radix-2 DIT butterfly reduces the computational
complexity of a single butterfly. The optimized radix-2
butterfly is used in building the 8- point and 16-point
DIT FFT algorithm. From Fig. 1, radix-2 DIT butterfly
algorithm can be re-drawn with all the arithmetic compo-
nents involved (complex additions, complex subtractions
and complex multiplications) as in Fig. 3.

The conventional radix-2 DIT butterfly consists of 4
complex multiplier and 6 complex adder/subtractor

Fig. 4 Optimized radix-2 DIT
FFT butterfly structure

Table 2 Computational
complexity for conventional and
optimized FFT algorithm

FFT
length

N

Number of
stages

log2N

Number of
butterflies
per stage
N2

Total
number
of butterflies

Number of multipliers

Conventional
FFT

Optimized
FFT

8 3 4 12 48 36

16 4 8 32 128 96

32 5 16 80 320 240

64 6 32 192 768 576

128 7 64 448 1792 1344

256 8 128 1024 4096 3072

512 9 256 2304 9216 6912

1024 10 512 5120 20,480 15,360

2048 11 1024 11,264 45,056 33,792

4096 12 2048 24,576 98,304 73,728

8192 13 4096 53,248 212,992 159,744

Ann. Telecommun.

Fig. 5 16-point DIT-FFT architecture

Fig. 6 Partial product reduction using approximation

Table 3 Accurate and
approximated half and full adder
logic table

Inputs Accurate

Half Adder

Approximate

Half Adder

Accurate

Full Adder

Approximate

Full Adder

A B C Sum Carry SumHA CarryHA Sum Carry SumFA CarryFA

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 1 1* 1 0 1 0 1

1 0 0 – – – – 1 0 1 0

1 0 1 – – – – 0 1 0 1

1 1 0 – – – – 0 1 1* 0*

1 1 1 – – – – 1 1 0* 1

*Altered truth table entries

Ann. Telecommun.

modules. Mathematically, the outputs C and D can be
written as,

Cr þ iCið Þ ¼ Ar þ iAið Þ þ Br þ iBið Þ Wr þ iWið Þ ð4Þ
Dr þ iDið Þ ¼ Ar þ iAið Þ– Br þ iBið Þ Wr þ iWið Þ ð5Þ

On expanding the above equations with real and imaginary
terms,

Cr þ iCið Þ ¼ Ar þ BrWr–BiWi þ iAi þ iBrWi þ iBiWr ð6Þ
Dr þ iDið Þ ¼ Ar–BrWr þ BiWi þ iAi–iBrWi–iBiWr ð7Þ

The real and imaginary terms can be detached, in order for
FPGA or Application Specific Integrated Circuit (ASIC) im-
plementation, Eqs. (6) and (7) become

Cr ¼ Ar þ BrWr–BiWi ð8Þ
Ci ¼ Ai þ BrWi þ BiWr ð9Þ
Dr ¼ Ar–BrWr þ BiWi ð10Þ
Di ¼ Ai–BrWi–BiWr ð11Þ

The complex arithmetic operations involved in Eqs. (8) to
(11) is shown in Fig. 3. The arithmetic optimization can be
applied to the above four Eqs. (8), (9), (10) and (11) in order to

Table 4 Accurate and approximated 4–2 and 5–3 compressor-adders logic table

Inputs Accurate
4–2 Compressor

Approximate
4–2 Compressor

Accurate
5–3 Compressor

Approx. 5–3 Com.

A B C D E Sum Carry Sum4–2 Carry4–2 Sum15–3 Sum25–3 Sum35–3 Sum3’5–3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 0 1 0 0 0

0 0 0 1 0 1 0 1 0 1 0 0 0

0 0 0 1 1 0 1 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0 1 0 0 0

0 0 1 0 1 0 1 1* 0* 0 1 0 0

0 0 1 1 0 0 1 1* 0* 0 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0

0 1 0 0 0 1 0 1 0 1 0 0 0

0 1 0 0 1 0 1 1* 0* 0 1 0 0

0 1 0 1 0 0 1 1* 0* 0 1 0 0

0 1 0 1 1 1 1 1 1 1 1 0 0

0 1 1 0 0 0 1 0 1 0 1 0 1*

0 1 1 0 1 1 1 1 1 1 1 0 1*

0 1 1 1 0 1 1 1 1 1 1 0 1*

0 1 1 1 1 0 0 1* 1* 0 0 1 1

1 0 0 0 0 – – – – 1 0 0 0

1 0 0 0 1 – – – – 0 1 0 0

1 0 0 1 0 – – – – 0 1 0 0

1 0 0 1 1 – – – – 1 1 0 0

1 0 1 0 0 – – – – 0 1 0 0

1 0 1 0 1 – – – – 1 1 0 0

1 0 1 1 0 – – – – 1 1 0 0

1 0 1 1 1 – – – – 0 0 1 0*

1 1 0 0 0 – – – – 0 1 0 0

1 1 0 0 1 – – – – 1 1 0 0

1 1 0 1 0 – – – – 1 1 0 0

1 1 0 1 1 – – – – 1 0 1 0*

1 1 1 0 0 – – – – 1 1 0 1*

1 1 1 0 1 – – – – 1 0 1 1

1 1 1 1 0 – – – – 1 0 1 1

1 1 1 1 1 – – – – 1 0 1 1

*Altered truth table entries

Ann. Telecommun.

get the repeated terms with a common multiplication factor.
By adding and subtracting BrWi to Eqs. (8) and (10) and BiWi

to (9) and (11), the Eqs. (8) to (11) can be rewritten as,

Cr ¼ Ar þ BrWr–BiWi þ BrWi–BrWi ð12Þ
Ci ¼ Ai þ BrWi þ BiWr þ BiWi−BiWi ð13Þ
Dr ¼ Ar–BrWr þ BiWi þ BrWi–BrWi ð14Þ
Di ¼ Ai–BrWi–BiWr þ BrWi–BrWi ð15Þ

By rearranging the repeated terms, Eqs. (12) to (15) can be
rewritten as,

Cr ¼ Ar þ Br Wr þWið Þ–Wi Br þ Bið Þ ð16Þ
Ci ¼ Ai þ Bi Wr−Wið Þ þWi Br þ Bið Þ ð17Þ
Dr ¼ Ar–Br Wr þWið Þ þWi Br þ Bið Þ ð18Þ
Di ¼ Ai–Bi Wr−Wið Þ–Wi Br þ Bið Þ ð19Þ

The term (Br + Bi) appears in all the equations from (16) to
(19), which can be considered as shared adder for all the four
computation. The terms (Wr +Wi) and (Wr −Wi) involves
none of the arithmetic computation since the twiddle
factor values are constant that can be stored in Read
Only Memory (ROM). For various higher length FFT

implementations, this twiddle factor values can be
shared from ROM since it exhibits symmetricity and period-
icity properties. The arithmetic computations involved in Eqs.
(16) to (19) is shown in Fig. 4.

From Fig. 4, the optimized radix-2 DIT butterfly struc-
ture has 3 complex multipliers and 7 complex adder/
subtractor modules. When compared with conventional
radix-2 DIT method, one multiplier has been reduced at
the cost of an addition of one complex adder in the opti-
mized radix-2 DIT butterfly structure. Even though only
one complex multiplier is reduced in optimized radix-2
structure, implementation of higher points FFT/IFFT will
have a significant reduction in computational complexity.
The computational complexity of conventional and opti-
mized radix-2 DIT butterfly for various FFT lengths are
shown in Table 2. By using the arithmetically optimized
basic radix-2 butterfly modules in implementing the FFT/
IFFT core, it is evident that 25% of area utilized by com-
plex multipliers can be reduced. This optimized radix-2
butterfly is used to implement the 16 point DIT FFT
which is shown in Fig. 5. The optimized radix-2 butter-
flies are represented as “R-2” and the twiddle factors
needed for butterfly computations in each stage are stored
and accessed from ROM.

Fig. 7 RTL schematic of conventional radix-2 butterfly structure

Ann. Telecommun.

4 Approximate complex multipliers
for FFT/IFFT computation

Any real or complex arithmetic processing can be performed
on an approximation. An approximate complex 16-bit multi-
plier is designed and it is used in building the preliminary
blocks for FFT/IFFTcomputations. Implementation of a com-
plex multiplication module includes three phases: generation
of partial products, partial product reduction and final addi-
tion. Dynamic power consumption, path delay, and circuit
complexity are dominated by the partial product reduction
phase. Many techniques have been proposed to reduce the
path delay in the implementation of complex multiplication,
in which, usage of compressors plays a critical function. The
formerly generated partial products are altered to propagate

and generate signals which are shown in the following equa-
tions.

Pm;n ¼ Am;n þ An;m ð20Þ
Gm;n ¼ Am;n:An;m ð21Þ

The propagate signals (Eq. 20) are approximated using
approximate half adders, approximate full adders and approx-
imate 4–2 compressor adders. The compressors are construct-
ed using full adders or half adders in order to count the number
of one’s in the input. Here, 4–2 and 5–3 compressors are
utilized for approximating altered partial products, since lower
order compressors consume minimum area. The approxima-
tion is applied using simple OR gate for generate signals (Eq.
21). The first stage of partial product reduction using

Fig. 8 RTL schematic of optimized radix-2 butterfly structure

Table 5 Computational complexity for multipliers and radix-2 butterfly FPGA implementation

Parameter 16-bit complex multiplier Conventional
butterfly

Optimized butterfly Conventional
butterfly

Optimized butterfly

Multiplier
type

Conventional
accurate

Proposed
approximate

Conventional
accurate

Conventional
accurate

Proposed approximate Proposed
approximate

Logic slices 597 424 818 221 673 162

Registers – – 64 32 64 32

Utilization rate 1.80% 1.28% 2.46% 0.67% 2.03% 0.49%

Delay (ns) 67.07 23.28 28.22 14.38 26.75 16.25

Power (mW) 10.88 8.57 32.95 10.53 28.39 9.90

Ann. Telecommun.

approximation technique for 16-bit multiplier is shown in
Fig. 6. The second stage of reduction uses twelve approximate
full adder, four 4–2 approximate compressor, and eleven 5–3
approximate compressor circuits.

In an accurate half adder, XOR gate is used to calculate
SumHA. XOR gate of the accurate half adder is replaced with
OR gate in approximation, since area utilization of the XOR
gate is higher. To calculate the SumFA and CarryFA of full
adder, three XOR gates are necessary. For the approximation
of full adder, one XOR gate is replaced with OR gate in sum

computation. The logic difference because of this replacement
in approximate half adder and full adder circuit operations are
shown in Table 3 as * (asterisk symbol) and illustrated math-
ematically through the following equations,

SumHA ¼ Bþ C ð22Þ
CarryHA ¼ B � C ð23Þ
SumFA ¼ Aþ Bð Þ xor C ð25Þ
CarryFA ¼ Aþ Bð Þ � C ð26Þ

Fig. 9 Simulation waveforms for optimized radix-2 butterfly

Table 6 Computational complexity for 8-point FFT structure FPGA
implementation

Parameter Conventional Optimized Conventional Optimized
Multiplier type Accurate

16-Bit
Approximate
16-Bit

Logic slices 2207 1864 1622 1565

Registers 496 496 488 456

Utilization rate 6.64% 5.61% 4.88% 4.71%

Delay (ns) 11.58 8.54 10.29 8.42

Power (mW) 76.44 70.38 73.02 70.17

Frequency
(MHz)

49.37 53.37 70.18 75.97

Throughput
(Gbps)

12.64 13.66 17.97 19.45

Fig. 7 Computational complexity for 16-point FFT structure FPGA
implementation

Parameter Conventional Optimized Conventional Optimized
Multiplier type Accurate

16-bit
Approximate
16-bit

Logic slices 6306 2751 4089 2495

Registers 962 618 718 572

Utilization rate 18.98% 8.28% 23.31% 7.51%

Delay (ns) 12.72 8.62 11.34 7.92

Power (mW) 168.49 106.65 118.78 87.32

Frequency
(MHz)

43.50 47.30 64.21 74.65

Throughput
(Gbps)

44.54 48.44 65.75 76.44

Ann. Telecommun.

Compressors and compressor-adders are the primary building
blocks of the proposed complex multipliers to accumu-
late the generated partial products. Compressor-adders
are used in the second stage of complex multiplication
to reduce the number of partial products so as to reduce
the gate count and critical path delay. The utilization of
approximate compressors in the least significant bits de-
creases power consumption and circuit area because of
less switching rate than most significant bits. In 5–3
compressor-adder circuit, five input bits are summed
up to produce three output bits. This compressor will
be used in the second stage of partial product reduction
stage. The Sum4–2 and Carry4–2 represent the sum and
carry outputs for the 4–2 compressor module which are
expressed in Eqs. (27)–(28). Similarly, Sum15–3, Sum25–
3, and Sum35–3 represent the accurate outputs for the 5–
3 compressor-adder circuit expressed in the Eqs.
(29)–(31). Sum3’5–3 represents the output for the ap-
proximate 5–3 compressor-adder circuit shown in the
Eq. (32). The outputs Sum15–3 and Sum25–3 will remain same
for the accurate as well as approximate 5–3 compressor-adder
computations. But the output Sum35–3 in the accurate 5–3
compressor-adder computation is replaced by Sum3’5–3 in the
approximate 5–3 compressor-adder computation. The logic dif-
ferentiation between accurate and approximate, 4–2 and 5–3
compressor-adders, is shown as * (asterisk symbol) in Table 4.

Sum4–2 ¼ B xor Cð Þ þ D xor Eð Þ þ B � Cð Þ � D � Eð Þ ð27Þ
Carry4–2 ¼ B � Cð Þ þ D � Eð Þ ð28Þ
Sum15–3 ¼ A xor B xor C xor D xor E ð29Þ
Sum25–3 ¼ C xor D ð30Þ
Sum35–3 ¼ A � ∼ A xor Bð Þð Þ þ B � A xor Bð Þ

� C � ∼ A xor B xor C xor Dð Þð Þð Þ þ D

� A xor B xor C xor Dð Þ ð31Þ
Sum3’5–3 ¼ C � D ð32Þ

5 Implementation results and discussions

The proposed 8- and 16-point FFT/IFFT algorithms are im-
plemented using conventional as well as optimized radix-2
FFT algorithm. The designed 16-bit approximate complex
multiplier is used in both the conventional radix-2 algorithm
(Fig. 3) and optimized radix-2 algorithm (Fig. 4). The perfor-
mance measures of conventional and optimized FFT algo-
rithms are also compared with that of FFT algorithm (conven-
tional and optimized) designed using approximate 16-bit com-
plex multiplier.

The conventional FFT algorithm, arithmetically optimized
FFT algorithm and FFT algorithm (conventional and opti-
mized) using approximate multipliers, for 8 and 16 points
are designed, synthesized, simulated, and tested in 45-nm
technology library using Cadence® NCLaunch, SimVision
and Encounter RTL Compiler. The proposed FFT/IFFT de-
signs are also analyzed, synthesized, and simulated in Altera®
Quartus-II EP2C35F672C6 FPGA device using Verilog
Hardware Description Language (HDL). The experimental
results obtained and the analysis made using Cadence and
Altera simulators are discussed in detail as follows.

The Register Transfer Level (RTL) description of the con-
ventional radix-2 butterfly structure and arithmetically opti-
mized radix-2 butterfly structure are presented in Figs. 7 and
8 which shows the adder and complex multiplier modules
present. The clock enabled registers are used at each output
port to throw the output bits to the successive modules.

The synthesis and compilation summary of the convention-
al and optimized radix-2 structures with accurate and approx-
imate complex multipliers are presented in Table 5. The de-
signed radix-2 butterflies using accurate and approximate
multipliers are implemented in EP2C35F672C6 device which
has a total of 33,216 combinational functions. The utilization
rate for conventional and optimized radix-2 butterflies using
accurate complex multiplier are 2.46% and 0.67% respective-
ly with an improvement factor of 3.67%. Similarly, the utili-
zation rates for conventional and optimized radix-2 butterflies
using approximate complex multiplier are 2.03% and 0.49%
with an improvement factor of 4.14%. It is evident from the

Table 8 ASIC implementation of
different 8- and 16-point FFT
architecture

FFT Points Method Multiplier type Cells Area (μm2) Power (mW) Delay (ps)

8-point Conventional Accurate

16-bit

16,232 94,687 4.97 406

Optimized 16,068 93,255 3.71 381

Conventional Approximate

16-bit

3486 36,038 4.18 398

Optimized 2542 28,010 3.61 370

16-point Conventional Accurate

16-bit

30,085 161,401 13.91 407

Optimized 24,488 143,135 9.10 364

Conventional Approximate

16-bit

11,970 120,847 8.19 342

Optimized 7338 64,811 6.18 308

Ann. Telecommun.

table that parameters pertaining to delay and power are im-
proved at least by a factor of 1.65% and 1.48% respectively
for optimized radix-2 butterfly structure using approximate
multiplier. The simulation waveforms of the proposed opti-
mized radix-2 butterfly (for first stage), which has the input–
output signals, clock signal and twiddle factor inputs, obtained
from Altera ModelSim tool are shown in Fig. 9.

The synthesis and compilation summary of the convention-
al and optimized 8-point FFT architecture using 16-bit

accurate and approximate complex multipliers are presented
in Table 6. It is evident from the table that FFTalgorithm using
arithmetically optimized radix-2 butterfly have improved per-
formance than with the conventional radix-2 butterfly in terms
of number of logic slices, delay, power consumption and op-
erating frequency. The optimized butterfly improves the
FPGA utilization rate by 1.18%. The time delay for conven-
tional FFT and optimized FFT are 11.58 ns and 8.54 ns re-
spectively. Similarly, dynamic power consumption in
FPGA for the conventional and proposed optimized
FFT algorithm are 76.44 mW and 0.38 mW respectively.
The conventional and optimized FFT algorithm using
the proposed 16-bit complex approximate multiplier also
have improved performance metrics when compared to
that of using accurate multipliers.

The synthesis and compilation summary of the convention-
al and optimized 16-point FFT architecture using 16-bit accu-
rate and approximate multipliers are presented in Table 7. It is
apparent from the table that 16-point with optimized radix-2
butterfly have improved performances than 8-point, as
discussed in the Section 3. The throughput for the designed
module in the FPGA device is calculated based on the fre-
quency of operation, number of output paths, and number of
output bits per output path. The error calculation of the ap-
proximate computations is done using the Matlab software
and found to be lesser than 2% when compared with the ac-
curate computations.

ASIC implementation results for the conventional and op-
timized 8-point FFT architecture using 16-bit accurate and
approximate complex multipliers in 45-nm technology library

Table 9 Comparison among different FFT processors

FFT Processor Architecture Process
(nm)

FFT size Frequency (MHz) Normalized area (mm2) Normalized energy (nJ)

S.Yeng [7] MDF 180 128~2048 35 0.94 1.28

C.M.Chen [8] Cached FFT 180 128~1024 51 2.05 2.06

M.S.Patil [9] SDF 180 128~2048 40 2.21 1.39

S.N.Tang [10] Multi-Data Scaling 90 2048 300 2.265 0.83

J.Chen [11] GHR 180 128~2048 122.88 2.44 4.12

C.Yu [12] SDF 90 128~2048 40 2.813 0.313

K.J.Yang [29] MDC 90 128~2048 40 6.05 5.16

T.Cho [30] MR-Pipelined 90 512 310 6.093 1.31

S.J.Huang [31] Cascaded Pipeline/Parallel 90 512 324 7.265 0.82

J.Raja [13] Cached FFT 180 64 251 9.98 53.85

S.J.Huang [32] Memory Base 90 512 324 19.21 14.41

T.Ahamed [33] Feed-Forward 65 512 330 21.41 1.84

S.Kala [14] R4-SDC 130 64 5 24.8 2.11

Proposed
(accurate multi.)

Optimized radix-2 45 8~16 47.30 0.6 0.38

Proposed
(approx. multi.)

Optimized radix-2 45 8~16 74.65 1.43 0.67

Fig. 10 Layout of the FFT core

Ann. Telecommun.

using standard cells with a supply voltage (VDD) of 1.02 Vare
presented in Table 8. The backend physical design up to the
layout of the proposed FFT/IFFT core with nine metal layers
and one poly process is shown in Fig. 10.

The proposed 8-point and 16-point, conventional and opti-
mized, with 16-bit approximate multipliers have improved
performance in terms of area, power, and delay which are
the essential parameters to be considered for chip design. A
factor of 2.5 to 3.5% of area utilization improvement is
achieved with the proposed approximate multiplier design
for the 8- and 16-point FFT computations. About 1.2 to
1.6% improvement in power utilization and 1.1 to 1.3% im-
provement in delay calculation are also achieved with the
proposed 8- and 16-points FFT computations using the ap-
proximate complex multipliers.

Normalized area, energy, and throughput are the significant
parameters to evaluate the performance of semi-customed
ASIC implementation of the designed various FFT/IFFT ar-
chitectures and comparison with the existing architectures.
Several methods [22, 24, 25] have been proposed in the liter-
ature tomeasure the normalized area and energy for FFT/IFFT
processors, but these evaluations were carried out for the same
number of FFT/IFFT data points (N). For different FFT/IFFT
sizes (N), different simulation parameters and technology li-
brary used, the evaluation proposed in [7, 26–28], is optimal
for the comparison, that can be given as,

AreaNormalized ¼ Area

N � Tech
0:18Þ

2
� ð33Þ

EnergyNormalized ¼
Power � Exec:Time

N � VDD
1:8

� �2 ð34Þ

Table 9 compares the operation frequency, normalized area
and normalized energy of the different existing FFT/IFFT ar-
chitectures with the proposed architectures. Even though dif-
ferent FFT sizes are considered for comparison, the area and
power parameter are normalized by using the Eqs. (33) and
(34). It is obvious from the table that the normalized area and
energy are very lesser when comparing with the other archi-
tectures. This is because the proposed optimized radix-2 but-
terfly structure reduces the multiplier count when compared
with the other existing architectures. When approximation is
used in the complex multiplier, it can also be claimed that the
area utilization and power consumption is also reduced.

6 Conclusion

In this paper, we have presented the design of 8- and 16-point
FFT/IFFT core using arithmetically optimized radix-2 butter-
fly units and complex approximate multipliers. The computa-
tional radix-2 butterflies are area efficient, low power, and

high speed which accomplishes the implementation of high
performance 8- and 16-point FFT/IFFT processing core. The
number of complex multipliers in a single radix-2 butterfly is
reduced to three units using arithmetic optimization technique.
The accurate complex multipliers in conventional as well as
optimized radix-2 butterflies are replaced with area efficient
approximate complex multipliers. The proposed optimized
radix-2 butterfly based 16-point FFT core occupies an area
of 143.135 mm2, consumes a power of 9.10 mW with a max-
imum throughput of 48.44 Gbps. Similarly, the approximate
radix-2 butterfly based optimized 16-point FFT core occupies
an area of 64.811 mm2, consumes a power of 6.18 mWwith a
maximum throughput of 76.44 Gbps. Therefore, we conclude
that the proposed FFT/IFFT designs ensure a good trade-off
among area utilization, power consumption, and operating
throughput which is more appropriate for telecommunication
based applications such as optical OFDM, massive/coopera-
tive/multi-user MIMO and MIMO in 5G. As a future sugges-
tion, one could implement the proposed optimized radix-2
butterfly units for higher points FFT/IFFT computations
which would be expected to have improved performance than
the existing architectures.

References

1. Fonseca M, Costa E, Martins J (2011) Implementation of pipelined
butterflies from Radix-2 FFT with decimation in time algorithm
using efficient adder compressors. Proceedings of 2nd IEEE Latin
American Symposium on Circuits and Systems (LASCAS)

2. Takala T, Punkka K (2005) Butterfly unit supporting Radix-4 and
Radix-2 FFT. Proceedings of the 2005 International TICSP
Workshop on Spectral Methods and Multirate Signal Processing,
SMMSP 2005 30:47–54

3. Costa E, Monteiro J, Bampi S (2003) Gray encoded arithmetic
operators applied to FFT and FIR dedicated datapaths. In: 12th

International Conference on Very Large Scale Integration (VLSI-
SoC), pp 307–312

4. Laguri N, Anusudha K (2014) VLSI implementation of efficient
split radix FFT based on distributed arithmetic. In: IEEE
Intonference on Green Computing Communication and Electrical
Engineering (ICGCCEE), pp 1–5

5. Lin J, Chung H (2013) The split-radix fast Fourier transforms with
radix-4 butterfly units. In: IEEE Signal and Information Processing
Association Annual Summit and Conference (APSIPA), pp 1–5

6. Qian Z, Nasiri N, Segal O, Margala M (2014) FPGA implementa-
tion of low-power split-radix FFT processors. In: 24th IEEE
International Conference on Field Programmable Logic and
Applications (FPL), pp 1–2

7. Sheng-Yeng K-T, Chao-Ming, Yuan-Hao (2010) Energy-efficient
128∼2048/1536-point FFT processor with resource block mapping
for 3GPP-LTE system. In: The 2010 International Conference on
Green Circuits and Systems, Shanghai, pp 14–17

8. C. Chen, C. Hung and Y. Huang, An energy-efficient partial FFT
processor for the OFDMA communication system in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 57,
no. 2, pp. 136–140, 2010

Ann. Telecommun.

9. Patil MS, Chhatbar TD, Darji AD (2010) An area efficient and low
power implementation of 2048 point FFT/IFFT processor for mo-
bile WiMAX. In: 2010 International Conference on Signal
Processing and Communications (SPCOM), Bangalore, pp 1–4

10. S. Tang, J. Tsai and T. Chang, "A 2.4-GS/s FFT processor for
OFDM-based WPAN applications," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 451–
455, 2010

11. J. Chen, J. Hu, S. Lee and G. E. Sobelman, "Hardware efficient
mixed Radix-25/16/9 FFT for LTE systems," in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 2, pp.
221–229, 2015

12. C. Yu andM. Yen, "Area-efficient 128- to 2048/1536-point pipeline
FFT processor for LTE and Mobile WiMAX systems," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 9, pp. 1793–1800, 2015

13. Raja J, Mangaiyarkarasi P, Moorthi K (2015) Area efficient low
power high performance cached FFT processor for MIMO
OFDM application. Int J Appl Eng Res 10:11853–11868

14. Kala S, Nalesh S, Nandy SK, Narayan R (2013) Design of a low
power 64 point FFT architecture for WLAN applications. In: 2013
25th International Conference on Microelectronics (ICM), Beirut,
pp 1–4

15. Liu W, Qian L, Wang C, Jiang H, Han J, Lombardi F (Aug. 2017)
Design of approximate radix-4 booth multipliers for error-tolerant
computing. IEEE Trans Comput 66(8):1435–1441

16. Momeni A, Han J, Montuschi P, Lombardi F (Apr. 2015) Design
and analysis of approximate compressors for multiplication. IEEE
Trans Comput 64(4):984–994

17. Kulkarni P, Gupta P, Ercegovac MD (2011) Trading accuracy for
power in a multiplier architecture. J Low Power Electron 7(4):490–
501

18. Lin C-H, Lin C (2013) High accuracy approximate multiplier with
error correction. In: Proc. IEEE 31st Int. Conf. Comput. Design, pp
33–38

19. Bansal Y, Madhu C (2016) A novel high-speed approach for 16_16
vedic multiplication with compressor adders. Comput. Elect. Eng
49:39–49

20. Esposito D, Strollo AGM, Napoli E, De Caro D, Petra N
Approximate multipliers based on new approximate compressors.
In: IEEE Transactions on Circuits and Systems I: Regular Papers.
https://doi.org/10.1109/TCSI.2018.2839266

21. Yang T, Ukezono T, Sato T (2017) Low-Power and High-Speed
Approximate Multiplier Design with a Tree Compressor. In: 2017
IEEE international conference on computer design (ICCD), Boston,
MA, pp 89–96

22. Lin YT, Tsai PY, Chiueh TD (2005) Low-power variable-length fast
fourier transform processor. IEEE Proc Comput Digit Tech 152:
499–506

23. Cooley J, Tukey J (1965) An algorithm for the machine calculation
of the complex fourier series. Mathematical Computation 19:297–
301

24. Chiueh TD, Tsai PY (2007) OFDM baseband receiver design for
wireless communications. Wiley, New York

25. Chen CM, Hung CC, Huang YH (2010) An energy-efficient partial
FFT processor for the OFDMA communication system. IEEE
Trans Circuits Syst II Exp Briefs 57:136–140

26. Konguvel E, Kannan M (2018) A survey on FFT/IFFT processors
for next generation telecommunication systems. Journal of Circuits,
Systems and Computers 27(03):1830001

27. Konguvel E, Kannan M (2019) Hardware implementation of FFT/
IFFT algorithms incorporating efficient computational elements.
Journal of Electrical Engineering & Technology, Springer, 2093–
7423 04(4):1717–1721

28. Manuel BR, Konguvel E, Kannan M (2017) An Area Efficient
High Speed Optimized FFT algorithm. In: Proc. of 2017 4thIEEE
International Conference on Signal Processing, Communications
and Networking (ICSCN’17), Chennai, pp 1–5, 16–18 March

29. K. Yang, S. Tsai and G. C. H. Chuang, "MDC FFT/IFFT processor
with variable length for MIMO-OFDM systems," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 4, pp. 720–731, 2013

30. Cho T, Lee H (2013) A high-speed low-complexity modified radix-
25 FFT processor for high rate WPAN applications. IEEE Trans
Very Large Scale Integr 21:187–191

31. S. Huang and S. Chen, "A high-throughput Radix-16 FFT proces-
sor with parallel and normal input/output ordering for IEEE
802.15.3c systems," in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 59, no. 8, pp. 1752–1765, 2012

32. Huang S, Chen S (2010) A green FFT processor with 2.5-GS/s for
IEEE 802.15.3c (WPANs). In: The 2010 International Conference
on Green Circuits and Systems, Shanghai, pp 9–13

33. Ahmed T, Garrido M, Gustafsson O (2011) A 512-point 8-parallel
pipelined feedforward FFT forWPAN. In: 2011 Conference Record
of the Forty Fifth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), Pacific Grove, CA, pp 981–984

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Ann. Telecommun.

https://doi.org/10.1109/TCSI.2018.2839266

	VLSI implementation of an area and energy&newnbsp;efficient FFT/IFFT core for MIMO-OFDM applications
	Abstract
	Introduction
	FFT—preliminaries
	Arithmetic optimization for radix-2 butterfly
	Approximate complex multipliers for FFT/IFFT computation
	Implementation results and discussions
	Conclusion
	References

