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Abstract

Human action recognition plays a significant role in a number of computer vision applications. This work is based on three processing
stages. In the first stage, discriminative frames are selected as representative frames per action to minimize the computational cost and
time. In the second stage, novel neighbourhood selection approaches based on geometric shapes including triangle, quadrilateral, pen-
tagon, hexagon, octagon and heptagon are used in Volumetric Local Binary Pattern (VLBP) to extract the features from frame sequences
based on motion and appearance information. Hexagonal Volume Local Binary Pattern (H-VLBP) descriptor has been found to produce
better results among all other novel geometric shape based neighbourhood selection approaches for human action recognition. However,
the dimensionality of extracted feature from H-VLBP is too large. Therefore, the deep stacked autoencoder is used for dimensionality
reduction with the decoder layer replaced by softmax layer for performing multi-class recognition. The developed approach is applied to
four publicly available benchmark datasets, namely KTH, Weizmann, UCF11 dataset and IXMAS dataset for human action recogni-
tion. The results obtained show that the proposed approach outperforms the state-of-art techniques. Moreover, the approach has been
tested with a synthetic dataset and better results have been obtained. This illustrates the effectiveness of the approach in real time
environment.
� 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Recognizing human actions in videos has emerged as
one of the significant research problems in the field of com-
puter vision, popularly known as Human Action Recogni-
tion (HAR). It tries to imitate the human visual system by
focusing on regions that involve human actions as Region
of Interest (ROI) in the videos. HAR finds application in
surveillance, video retrieval, robotics, abnormal activity
recognition and many more fields. Generally, HAR is
https://doi.org/10.1016/j.cogsys.2019.03.001
1389-0417/� 2019 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: shiloah@annauniv.edu (E.D. Shiloah).
believed to have at least the following properties: (i) it
should detect the precise boundaries of the ROI with com-
plete information (ii) high computational efficiency high
with low computational complexity. (iii) high accuracy
even if the number of actions increases. The key issues con-
cerning HAR (Nguyen, Li, & Ogunbona, 2016; Popoola &
Wang, 2012) are cluttered backgrounds, changes of view-
point, illumination changes, camera motion, variations of
human clothes and postures occlusions. The challenging
problem in most of the HAR methods (Popoola &
Wang, 2012) are variance to geometric transformation such
as rotation, scale, translation and high computational
complexity.
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General HAR techniques (Nguyen et al., 2016; Popoola
& Wang, 2012) are human body model based methods (2D
or 3D information on human body), holistic methods
(Shape and silhouette) and local feature methods. This
paper fully focuses on a local feature descriptor. One of
the local feature detectors is Spatio-Temporal Interest
Point (STIP) detectors. Recently, researchers have devel-
oped much interest in analysing the human motion or
actions in a spatio-temporal domain such as Motion
Energy Image (MEI) (Ahad, Tan, Kim, & Ishikawa,
2012), Motion History Image (MHI), Optical Flow (OF)
(Chaudhry, Ravichandran, Hager, & Vidal, 2009), and so
on. The popular interest point detectors (Krig, 2016) are
Scale Invariant Feature Transform (SIFT), Speeded-Up
Robust Features (SURF), Binary Robust Invariant Scal-
able Keypoints (BRISK), Histogram of Oriented Gradi-
ents(HOG), Harris corner detector, Features from
Accelerated Segment Test (FAST), Local Binary Pattern
(LBP), and so on.

Ojala, Pietikäinen, and Mäenpää (2000) have intro-
duced the Local Binary Pattern (LBP) technique for texture
classification. The traditional LBP operator labels the pix-
els of an image by thresholding a circular neighbourhood

region. LBPP ;R generates 2P different values on the radius

of R which represents the 2P different binary patterns.
Advantages of LBP are high discriminative power and
computational simplicity with good performance. Addi-
tionally, it is invariant to gray scale changes (Illumination
invariant). The main limitation of LBP is that it is not
invariant to rotations. It computes the difference of pixel
values only with limited structural information and ignores
magnitude or orientation information. Feature vector size
will vary with respect to the number of neighbours. Addi-
tionally, space and time complexity also varies with respect
to the number of neighbours considered.

The effectiveness of LBP technique is extended to Vol-
ume LBP (VLBP) (Zhao & Pietikainen, 2007) for capturing
dynamic information in dynamic face recognition and
HAR. VLBP is used to extract the motion and appearance
information of the dynamic sequences introduced for
dynamic texture analysis. The temporal information
extracted by the VLBP features consists of both intra and
extra personal dynamics. In the VLBP procedure, gray val-
ues of frames are modelled as volume data. In the extracted
frames, overlapping three continuous frames are taken as
input and the three continuous frames are divided into
non-overlapping 3 � 3 � 3 voxels. VLBP techniques are
applied to it using the difference of gray scale values in
the volume data. The difference of gray value is calculated
by the center gray value of the current frame of 3 � 3 � 3
voxels and the neighbour values of the previous, current
and next frames. If the centre value is greater than neigh-
bour points then the values are replaced by 0’s, else 1’s.
Five different neighbourhood selection topologies (Ojala,
Pietikainen, & Maenpaa, 2002) such as circle, ellipse, para-
bola, hyperbola and spiral have been used. Each topology
has some advantages and disadvantages. Spiral topology
(Kazak & Koc, 2016) is rotation invariant but cannot
exploit the anisotropic structure information. This infor-
mation may be an important source of some problems.
An elliptical neighbourhood topology (Nguyen et al.,
2016) has been used to exploit this anisotropic structural
information than circle topology. The main drawback in
basic LBP and VLBP is the extraction of a large number
of features. Uniform LBP overcomes the limitation of large
feature vectors. Uniform pattern is used to reduce the large
data into a small subset. LBP-TOP (Three Orthogonal
Plane) (Kellokumpu, Zhao, & Pietikäinen, 2008), Local
Ternary Pattern (LTP) (Yeffet & Wolf, 2009), Motion Bin-
ary Pattern (MBP) (Baumann, Lao, Ehlers, & Rosenhahn,
2014) and so many extended LBP techniques have been
introduced in HAR.

In this paper, the H-VLBP descriptor is developed by
taking into consideration the motion and temporal infor-
mation. The proposed approach is introduced to improve
the performance of HAR with respect to computational
speed and recognition accuracy.

The contributions of this work are as follows,

1. Instead of working with all the frames or key frames,
discriminative frames per action are selected as represen-
tative frames for the actions that give effective results in
HAR classification.

2. The original VLBP representation is altered by a 6-point
hexagonal neighbourhood selection in the volume based
histogram extraction instead of using circular symmetric
selection which results in computational simplicity with
ease of use.

3. Some geometric neighbourhood selection topologies are
introduced.

4. Binary patterns created by hexagonal neighbourhood
points in VLBP is variant to rotation. Hence rotation
invariance is achieved using the bitwise shift operator.

5. Deep stacked autoencoder is used for dimensionality
reduction. The output layer of the autoencoder is
replaced by softmax layer. The softmax layer is trained
using supervised learning for multi class human action
recognition.

The remainder of the paper is organized as follows:
First, a comprehensive survey on related works is provided
in Section 2. The proposed HAR methodology including
the preprocessing, proposed neighbourhood selection
topologies, H-VLBP, rotation invariance and deep stacked
autoencoder is explained in Section 3. The developed
approach has been applied to four benchmark datasets
and one synthetic dataset. The experimental setup and
results are reported in Section 4. Section 5 compares the
two layer FFNN and deep stacked autoencoder with
respect to different parameter initializations and the corre-
sponding recognition accuracy. Conclusion and future
work are included in Section 6.



K. Kiruba et al. / Cognitive Systems Research 58 (2019) 71–93 73
2. Related works

Human action recognition is an important area of
research in the field of computer vision. The research
related to the various feature extraction, machine learning
and deep learning techniques (Akula, Shah, & Ghosh,
2018) involved in human action recognition are discussed
in this section.

Cheng et al. have proposed a supervised temporal t-
Stochastic Neighbor Embedding (ST t-SNE) and incre-
mental learning for human action recognition (Cheng,
Liu, Wang, Li, & Zhu, 2015). The main contribution of
their paper is silhouette sequential analysis based on ST
t-SNE which has been introduced to preserve the intrinsic
action structure with dimensionality reduction. They have
extracted discriminative features to introduce class label
information and temporal information into manifold learn-
ing methods. They have done the experiments on INRIA
Xmas Motion Acquisition Sequences (IXMAS) dataset,
Weizmann dataset and National Laboratory of Pattern
Recognition (NLPR) gait dataset. They have achieved
100% recognition rate with dimensionality reduction. Their
proposed approach is effective in class labelling and extrac-
tion of temporal information. Additionally, without any
preprocessing, their approach gives optimal low-
dimensional representation self-adaptively. But they have
failed to analyse the technique in complex action or activity
datasets with a dynamic background.

Chun and Lee have proposed a new motion descriptor
namely, Histogram of Motion Intensity and Direction
(HOMID) for human action recognition (Chun & Lee,
2016). They have estimated HOMID by using the optical
flow method. They have plotted a regular grid on an image
to partition the motion flow into sub-regions and the fea-
ture vector of each sub-region is framed by local flow direc-
tion and its intensity with less computational power. They
have used Support Vector Machine (SVM) for action clas-
sification. They have overcome the limitation of depen-
dency of camera view and narrow area coverage by
multiple views observation with less computational power
and memory. They have tested their experiment in i3DPost
and IXMAS database and have achieved 98.96% and
83.03% recognition rate respectively. From the literature,
it is inferred that their proposed technique has been tested
only with the single action in a video with better accuracy
but the presence of noise in the input increases the false
positive values in the motion intensity and direction. The
accuracy rate of action recognition has reduced with an
increase in the number of actions in a video.

Su et al. have proposed a multi-attribute sparse-coding
approach for action recognition from a single unknown
viewpoint (Su, Chiang, & Lai, 2016). In their work, first,
over-segmentation based background modelling and
foreground detection approach have been used to extract
silhouette from action videos by computing the Multi-
interval Motion History Image (MMHI). Second,
multi-view action video classification has been done by
multi-attribute sparse representation. Finally, a random
walk algorithm has been used to assign appropriate attri-
bute values to the unlabelled actions in the training data.
They have demonstrated the effectiveness of their proposed
method on three public multi-view human action datasets
namely, i3DPost, 3Dlife and IXMAS. They have achieved
77.2% of accuracy in i3DPost dataset, 65.6% of accuracy in
3Dlife dataset and 74.3% of accuracy in IXMAS dataset.
The merit of their work is that it can be used to segment
the foreground and shadow which provide more accurate
human silhouettes to extract the features for human action
recognition. They have tested their proposed work only
with multi-view single actions.

Xu et al. have presented the two stream dictionary learn-
ing architecture for action recognition (Xu, Jiang, & Sun,
2017). In their paper, the Interest Patches (IP) detector
based on human detector, background subtraction and
contour detector has been used to extract IPs on human
contours. Then, in order to compute the spatial and tempo-
ral streams, IP descriptors have been used to extract the
pixel values, gradients and optical flow. They have trained
the spatial SVM and temporal SVM based on the IP distri-
bution histograms and the scores of these two SVM are
fused to make a final decision in recognizing action. Two
stream dictionaries have been created for each action in
the benchmark dataset: one dictionary corresponds to the
spatial stream and the other one corresponds to the tempo-
ral stream. Their work has been found capable of handling
videos with camera motion and cluttered background.
They have tested their two stream dictionary learning
architecture in Weizmann datasets with 99.1% accuracy,
KTH datasets with 95.8%, Olympic sports dataset with
88.81% and HMDB51 dataset with 59.47%. They have
worked with single actions per video.

Guo et al. have proposed the 3D gradient LBP algo-
rithm for action recognition (Guo, Wang, & Xie, 2017).
The main contribution in their paper is the extraction of
STIP and calculation of the gradient cuboids from dense
sampling data which gives six planes in each 3D patch.
The six planes are front, rear, left, right, above and below.
They have compared the average value of each plane with
local features in the given threshold value. Based on thresh-
old comparison, histogram values are recorded and two
histogram values are concatenated and used for classifica-
tion of HAR. They have done the experiments on the
KTH, Weizmann and UT interaction dataset. They have
achieved 92.25% of correctness in KTH dataset, 92.88%
of correctness in Weizmann dataset and 91.42% of correct-
ness in UT-interaction dataset.

Qu and Li have proposed HAR based on improved Co-
occurrence Histogram Oriented Gradients (CoHOG)-
Local Quantization Code (LQC) (Qu & Li, 2017). In their
work, they have fused the LQC and CoHOG features for
the detection and recognition of human actions. LQC fea-
ture descriptor has been used to extract the spectral prop-
erty of the image. LQC character spectral property has
been used to calculate the edge characteristics. They have
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used Principal Component Analysis (PCA) to reduce the
dimensionality. They have used histogram interaction ker-
nel support vector machine (HIKSVM) classification for
HAR. They have experimented their work in KTH, Weiz-
mann and Hollywood2 and compared their results with the
following methods, CoHOG, HOG_LBP_HIKSVM,
COGMULBP and CoHOG_LQC_HIKSVM.

Al-Berry et al. have proposed the fusion of directional
wavelet LBP and moments for HAR (Al-Berry, Salem,
Ebeid, Hussein, & Tolba, 2016). In their work, they have
combined the advantages of local and global descriptors
using wavelet transformation. They have fused the Hu
invariant moments as global descriptors with 3-D station-
ary wavelet transform and incorporated the LBP concepts.
It is called Directional Wavelet-LBP (DW-LBP). They
have extracted feature vectors from the DW-LBP method
and have used five different directional bands individually
to train separately on multi-class data. Finally, voting
scheme has been used to find the best match. They have
experimented their work separately with basic LBP-
moments in KTH and Weizmann dataset. They have
achieved 96% recognition rate in KTH dataset and 91.4%
in Weizmann dataset using Decision Tree (DT) classifier.

Li et al. have proposed a method for action recognition
(Li, Yu, He, Sun, & Ge, 2016). They have proposed a
method based on multiple key motion history images.
First, they have selected the key MHI using entropy of
MHIs. Second, they have described the Spatial Pyramid
Matching (SPM) for describing the spatio-temporal infor-
mation of actions. Two-dimensional entropy of MHI and
Zernike moments of Motion History Images Edge (MHIE)
are combined as feature vectors based on SPM. SVM clas-
sification has been used to classify the human actions. They
have shown the comparison of proposed work with LBP_H
using the KTH dataset. They have achieved a recognition
rate of 94.0% using the proposed method and 73.0% using
LBP-H on multi MHIs.

Ahsan et al. have proposed a histogram of spatio-
temporal LBP for HAR (Ahsan, Tan, Kim, & Ishikawa,
2014). They have used Directional MHI (DMHI) as
Spatio-Temporal template and LBP to extract the features
from the Spatio Temporal template and have converted the
outcome histogram to feature vector. Additionally, they
have extracted selective silhouettes as shape features.
Finally, they have concatenated the two features and fed
the feature vectors to SVM classifier. They have experi-
mented their work in Weizmann dataset. They have vali-
dated this result using the 10-fold cross validation
method. They have achieved 90.56% of accuracy using
MHI_LBP_H, 90.56% using MHI_LBP_H+SF (Silhouette
Features), 93.15% using DMHI_LBP_H and 94.26% using
DMHI_LBP_H+SF.

Ji et al. have proposed a novel 3D CNN model for HAR
(Ji, Xu, Yang, & Yu, 2013). In their work, they have pro-
posed a 3D convolution operation to extract the spatial
and temporal features from videos. Seven frames have been
taken as raw input with size of 60 � 54. They have applied
a set of hardwired kernels on the raw input and to generate
multiple channels of information including five different
channels such as gray, gradient-x, gradient-y, optflow-x
and optflow-y. They have applied 3D convolutions with a
kernel size of 7 � 7 � 3 on each of the five channels sepa-
rately. In order to increase the feature maps, authors have
used two sets of different convolutions at each location.
After the three layers of convolution and two layers of sub-
sampling, they have converted the seven input frames into
a 128 dimensional feature vector. They have evaluated their
experiments on TREC Video Retrieval Evaluation (TREC-
VID) 2008 and the KTH dataset. They have analysed the
different combinations in 3D CNN and have achieved
78.28% of precision in TRECVID 2008 dataset and
90.2% of recognition accuracy in KTH dataset.

Shi et al. have introduced a three stream CNN frame-
work for human action recognition (Shi, Tian, Wang, &
Huang, 2016). In this work, they have proposed Sequential
Deep Trajectory Descriptor (SDTD) to extract the dense
trajectories and then these trajectories are converted into
sequential trajectories, which is a long-term motion
descriptor. They have projected the dense trajectories into
two dimensional planes and CNN-RNN network is used
to learn an effective representation for long-term motion
using spatial stream, temporal stream and SDTD stream.
Unlike two stream static spatial features, they have
extracted short term motion and long term motion in the
video. Finally, they have focused on deep neural networks
namely, CNN and LSTM to learn the spatial features and
capture the temporal features, respectively. They have eval-
uated their experiments on KTH, HMDB51 and UCF101
datasets. They have achieved 96.8% of recognition accu-
racy on KTH, 65.2% on HMDB and 92.2% on UCF101
dataset using three-stream CNN.

Baccouche et al. have proposed a fully automated deep
model for HAR without using any prior information
(Baccouche, Mamalet, Wolf, Garcia, & Baskurt, 2011).
First, they have used 3DCNN to extract spatio-temporal
information. Second, they have employed RNN to classify
each sequence at each timestep. They have used LSTM to
overcome the limitation of short term memory in RNN.
They have experimented their work on the KTH dataset
and achieved 92.17% of recognition accuracy. Buonamente
et al. have proposed a hierarchical neural architecture to
recognize human actions (Buonamente, Dindo, &
Johnsson, 2016). They have used Self Organizing Maps
(SOM) in each layer with different objectives. They have
experimented their work on INRIA 4D repository and
achieved better recognition rate.

Veeriah et al. have proposed the differential RNN
(dRNN) model (Veeriah, Zhuang, & Qi, 2015). They have
learnt the salient spatio-temporal representations of actions
to overcome the limitation of LSTM model which fails to
capture salient dynamic patterns. They have evaluated
their experiments on the KTH 2D dataset and the MSR
action 3D dataset. They have extracted HOG3D features
from the KTH2D dataset and depth sensor information
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features from MSR action 3D dataset such as position,
angle, offset, velocity and pairwise join distances. They
have achieved 93.28% and 91.98% of accuracy on KTH-1
and KTH-2 using 1-order dRNN+HOG3D, 93.96% and
92.12% of accuracy on KTH-1 and KTH-2 using 2-order
dRNN+HOG3D, 91.40% of accuracy using 1-order
dRNN and 92.03% of accuracy using 2-order dRNN on
MSRaction3D dataset.

Katircioglu et al. have introduced a deep learning
regression architecture for structure prediction of 3D
human pose from monocular images or 2D joint location
heat maps (Katircioglu, Tekin, Salzmann, Lepetit, &
Fua, 2018). They have combined autoencoders with CNNs
to improve the dependencies between human body parts
effectively and this combination improves the accuracy of
pose estimation. In their approach, they have trained a
stacked denoising autoencoder which learns the structural
information and enforces implicit constraints about human
body in its latent middle layer (latent pose representation).
Then the CNN architecture maps the raw image or the 2D
joint location heat map predicted from the input image to
the latent representation learnt by the autoencoder.
Finally, they have stacked the decoding layers of the
autoencoder on top of the CNN for reprojection from
the latent space to the original pose space and the entire
network gets fine-tuned by updating the parameters of all
the layers. They have evaluated their method on human
3.6 m, Human Eva, KTH multi view Football II and leads
sports pose (LSP) datasets.

Ijjina et al. have proposed a method for classification of
human action using pose based features (Ijjina, 2016). In
their work, they have extracted the pose information from
the input observation. They have used these pose informa-
tion to compute pose-based distance measurements. Then
the distance measures are evaluated by a set of fuzzy mem-
bership functions which is designed to get the value of the
unique motion pattern of each action. Finally, they have
given the input representations to the stacked autoencoder
for classification. They have used 100 and 50 neurons in
first and second layers, respectively. Then, the last layer
is softmax layer which consists of n neurons to produce
the classification results, where n refers to the number
action classes. They have experimented their work on
CMU MOCAP and Berkely MHAD datasets. They have
achieved 97.47% of recognition accuracy on the CMU
MOCAP dataset and 98.03% of recognition accuracy on
the Berkely MHAD dataset.

Inferred from the related research work on HAR
approaches, most of the research work focus on the spatio
temporal information extraction from video. VLBP
approach has been introduced for dynamic texture extrac-
tion and has the limitations of dimensionality in the fea-
ture vector. Dimensionality of the feature vector
depends on the number of neighbours. Hence, (Ojala
et al., 2000) proposed the LBP-TOP technique as an alter-
nate to VLBP with reduced feature dimension. No
researchers has focused on the dimensionality reduction
in VLBP because of the improvement of LBP-TOP. In
this work, deep stacked autoencoder has been used to
reduce the dimensionality of the feature vector and reduce
the computational complexity. Additionally, VLBP has
been modified by introducing various geometric shape-
based neighbourhood selection approaches to improve
the recognition accuracy and hexagonal neighbourhood
selection provides better results among other geometric
shapes.

The proposed approach focuses on effective feature
extraction using different geometric shape based neigh-
bourhood selection approaches, and the deep stacked
autoencoder has been used for dimensionality reduction,
thereby reducing the computational complexity. Softmax
classifier is used for multi class classification and it has
the impacts in recognition accuracy. The objective of this
work is to improve the recognition accuracy and reduce
the computational time.

3. Proposed methodology

The proposed approach consists of three phases. The
first phase involves preprocessing of frames. In this step,
discriminative frames per action are selected from mean-
ingful frames. Spatially normalized ROI frames are used
as input sequences. Then in the second phase, geometric
shape based neighbourhood topologies has been intro-
duced. The Hexagonal shape based neighbourhood selec-
tion has been found to perform better experimental
results among all other novel geometric shape based neigh-
bourhood selection. The resultant H-VLBP histograms are
normalized and converted as feature vectors. Finally in the
third phase, feature vectors are fed to the deep stacked
autoencoder for dimensionality reduction and the output
layer is activated by the softmax function which is used
for multi class human action recognition. The procedure
of the H-VLBP approach is discussed in Section 3.2.4.
Fig. 1 shows the detailed workflow of the proposed
approach.

3.1. Data pre-processing

3.1.1. Extracting meaningful frames

Each video V i is converted into n number of frames F i.
The extracted frames may contain repetitive sequences of
actions, for instance, 3 to 4 times of repetitive sequences
per video. Processing all the frames is computationally
complex and a time-consuming process. In order to over-
come this limitation, meaningful frames MFi are extracted
from frames F i. Thereby partially visible human and empty
frames (without object) are selected from the frame
sequences because discriminative information to recognize
the action may not be present in the partially visible human
body. Therefore, human detection techniques (Nguyen
et al., 2016) or manual cropping process (Chun & Lee,
2016) is used for the extraction of full body human motion
in the selected frames to detect the foreground Region of



Fig. 1. The workflow of the proposed approach.
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Interest (ROI). Additionally, the person size may vary
depending on whether the human moves away from the
camera or towards the camera. Hence the entire ROI frame
sequence is resized to uniform height and weight as spatial
normalization (Chun & Lee, 2016) to remove the transla-
tion and scaling variance. Spatial normalization is also
used for dimensionality problems in frame sequences.
The spatially normalized meaningful frames are defined
using Eq. (1),

Mi ¼ resizeðROIðMF iÞÞ ð1Þ
where Mi represents the meaningful frame which is the spa-
tially normalized ROI.

3.1.2. Discriminative frames per action

The sequence of action will be repetitive 2–4 times in
each video. A single sequence is selected and used instead
of working with multiple sequences in a single video. In this
paper, discriminative frames are chosen manually from the
single sequence instead of working with all the frames or
key frames (Sheena & Narayanan, 2015). For example, in
boxing action, left hand and left leg movement, right hand
and right leg movement, hand in boxing position are the
discriminative frames chosen as representative frames
which contains 9–10 frames. Temporal normalization is
not applied in the process, hence each image sequence
may consist of different number of frames.

Di ¼ Discrminative frames½Mi� ð2Þ
Di represents the discriminative frames per action which is
represented in Eq. (2). The number of discriminative
frames may range from 3 to 10 frames for every action
because a minimum of three frames are required to recog-
nize the action.

3.2. VLBP with hexagonal prism

3.2.1. Volumetric data model (Voxels)

A volumetric pixel or volume pixel or voxel is the three
dimensional equivalent of a pixel and the tiniest distin-
guishable element of a 3D projection. It is a volume ele-
ment that represents a specific grid value in 3D space.
Like pixels, voxels do not contain information about their
position in 3D space. Rather coordinates are inferred based
on their positions relative to other surrounding voxels. In
this volume data model represented in Eq. (3), height,
width and depth of the frames are considered. The volu-
metric data model,

v ¼ ½H;W;D� ð3Þ



Fig. 2. Volume data model (xyt- 3 Dimensional Data).

Fig. 3. Neighbour selection topologies. (a) Triangle (b) Quadrilateral.
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where H and W is height and width of the frames that exist
in x and y axes of spatial domain and D is the length of the
frames that exist in t-axis of the temporal domain. The
rectangular prism has been constructed using v. The rect-
angular prism is constructed using x, y and t axis. Fig. 2
shows the volume data model.

3.2.2. Introduction and motivation behind the proposed

geometric shape-based neighbourhood topologies

Surrounding pixels of the centre are named as neighbour
points. Ojala et al. (2000) introduced five general neigh-
bourhood topologies, namely, circle, ellipse, parabola,
hyperbola and spiral. Prewitt hexagonal mask (Vidya,
Veni, & Narayanankutty, 2009) and Sobel operators on
the hexagonal structure (He, Wu, Jia, & Hintz, 2008) show
that hexagonal structure pixel values lead to fast computa-
tion and accurate localization. The inspiration is obtained
from these neighbourhood topology and hexagonal mask
structure. Geometric shape based Neighbourhood
topologies have been developed instead of using 4-point
or 8-point circular symmetric neighbourhood selection.
Triangle and Quadrilateral neighbour selection topologies
are shown in Fig. 3. Additionally, some of the geometric
neighbourhood topologies such as pentagon with five
number of neighbours, heptagon with seven number of
neighbours and octagon with eight number of neighbours
are introduced and shown in Fig. 4. In 3 � 3 � 3 voxel,
pentagon and heptagon structures are compact. From the
structure, neighbours are selected.

The selection of neighbours may have meaningful infor-
mation in LBP. Most of the researchers have discussed cir-
cular symmetric neighbours using 4- points or 8- points.
Some of the researchers have used elliptical topology
(Nguyen & Caplier, 2012), parabola, hyperbola and spiral
techniques are addressed in some literature. In this paper,
geometric neighbourhood topologies such as hexagon, pen-
tagon, heptagon and octagon have been experimented and
results are shown in Table 10. Experimental result shows
that hexagonal neighbourhood selection performs well.
Hexagonal neighbourhood selection is used in this paper
which is discussed in Section 3.2.3.

3.2.3. H-VLBP

The main advantage of LBP technique is invariance to
monotonic changes in gray scale values (Ojala et al.,
2000). H-VLBP technique is applied over constructed rect-
angular volumetric data model. The gray values within the
rectangular prism are considered. The procedure for
extraction of H-VLBP Descriptor is summarized in Algo-
rithm 1. The following theoretical view gives the details
of H-VLBP in HAR.

Let F i represent gray images where i = 1, 2, 3, . . . , q, q
is number of frames. Each frame is divided into 3 � 3 � 3
non-overlapping voxels. Let ni(x, y) denote the centre pixel
C of the voxel. The pixels around C are neighbours or
neighbourhood. In 3 � 3 � 3 voxel, ni (x � 1, y � 1, t),
ni(x, y � 1, t), ni(x + 1, y�1, t), ni(x + 1, y, t), ni(x + 1, y
+ 1, t), ni(x, y + 1, t), ni(x � 1, y + 1, t) and ni(x � 1, y, t)
are neighbours at tth frame. Let N be the size of the neigh-
bourhood around C and FI represent the frame interval
between the frames. FI is set to 1. Every frame has mean-
ingful information to recognize the activity because mini-
mal discriminative frames alone are taken as input. R is
the radius of the circle and is set to 1. Within the circle
hexagonal neighbourhood is formed and six neighbour-
hood points are chosen with respect to R from the centre
pixel CF i in frame F i.

Side of the regular hexagon = Radius of the circle
(Morton & Waud, 1830).
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Algorithm 1. H-VLBP Descriptor

1: Input: F i

2: Output:FV i

3: S: number of consecutive frames considered
4: PreProcessing:
5: Mi = Resize(ROI(MF i ));
6: Di = Discriminative_frames ðMiÞ where 3 6 jDij 6 10
7: Volume Model:
8: [H W D] = Size(grayscale (Di))
9: H-VLBP:
10: Initialize FI, R = 1, S = 3;
11: Hbs  2ð2ðNþ1ÞþNÞ;
12: F Di

13: for m = 1; m<jFj; m++ do

14: Pr_F i  F[m];
15: Cr_F i  F[m + 1];
16: Nt_F i  F[m + 2];
17: FS[m] [Pr_F i; Cr_F i; Nt_F i]
18: for i = 1: h � 1 do

19: for j = 1: w � 1 do

20: for k = 1: d � 1 do

21: Divide FS[m] into 3 � 3 � 3 voxels
22: for all 3 � 3 � 3 voxels do
23: for ni = 0: N do
24: THLBPpr  T[dðcpr;CcrÞ þ

Pni
N¼0 dðPrni;CcrÞ];

25: THLBPcr  T[dðCcr;CcrÞ þ
Pni

N¼0 d(Crni;Ccr)];
26: THLBPnt  T[dðCnt;CcrÞ þ

Pni
N¼0 d(ntni;Ccr)];

27: H-VLBPF i  V
[THLBPpr; THLBPcr; THLBPpt];

28: H-VLBPF i multiplied by weights 2a,
where a = 0, 1, 2, . . . , 3 N + 2

29: H-VLBPRt
N ;R  min{{H-VLBPP ;R and

23Nþ1} + {H-VLBPN ;R and 1} + ROL{ROR
{HLBPpr;N , 2 N + 1}} + ROL{ROR{HLBPcr;N , N
+ 1}} + ROL{ROR{HLBP t;N , 1}}};

30: end for

31: Hb  H-VLBPRt
N ;R

32: end for

33: end for

34: end for
35: end for

36: X i  
PHbs

b¼0 jHbj;
37: end for

A hexagonal structure showing the vertices is given in
Fig. 4 and the points on the circle at the angles correspond-
ing to hexagonal neighbourhood are shown in Fig. 5(b)
Hexagon Neighbour points are equally spaced and con-
nected with respect to circle centre. The spatial coordinates
of the hexagonal neighbours of a pixel (x, y) at a radius
R = 1 are shown in Fig. 5(c) and (d). Fig. 7 shows the
H-VLBP with hexagonal-prism structure in 3D view. The
H-VLBP extracted procedure with R = 1, N = 6 and
FI = 1 is shown in Fig. 6.
Zhao and Pietikainen (2007) have provided the coordi-
nates of circularly symmetric neighbour set. The equations
are reproduced in Eqs. (4)–(6).

The coordinates of CF i;ni are ðx; y; tÞ. The coordinates of
current frame Ccr;F i;N are given by

Ccr;F i ;N ¼ ððxþ Rcos2pni=NÞ; ðy � Rsin2pni=NÞ; tÞ ð4Þ
The coordinates of previous frame Cpr;F i ;N are given by

Cpr;F i;N ¼ ððxþ Rcos2pni=NÞ; ðy � Rsin2pni=NÞ; t � 1Þ ð5Þ
The coordinates of next frame Cpt;F i ;N are given by

Cpt;F i;N ¼ ððxþ Rcos2pni=NÞ; ðy � Rsin2pni=NÞ; t þ 1Þ ð6Þ
N is set to 6. The angles of the hexagonal neighbours {0 or
2p; p

3
; 2 p

3
; p; 4 p

3
; 5 p

3
} are obtained using Eqs. (4)–(6) by

assigning the values of ni ¼ 0; 1; 2; 3; 4; 5.
The neighbouring pixel values does not always fall

exactly on the location of the pixel. Those pixel values
are estimated using bilinear interpolation. Bilinear interpo-
lation performs the computation of four corner pixel values
which is near to the pixel. In such cases, input is translated
by 0.5 pixels to the right in positive horizontal direction.
Hence, the coordinate values are translated by 0.5 pixels
using Eq. (7). The coordinates of CF i;ni are

CF i ;ni ¼ ððxþ Rcosðð2pniÞ=N þ 0:5ÞÞ;
ðy � Rsinðð2pniÞ=N þ 0:5ÞÞ; tÞ ð7Þ

To get illumination invariance, joint distribution V of the
gray levels of 3 N + 3 image pixels is obtained. Table 1
summarizes the notations used in the following equations.
General LBP operator (Ojala et al., 2000) is reproduced
here with hexagon structure in Eqs. (9)–(11). General
HLBP operator is given in (8),

HLBPðcÞ ¼
X5

i¼0
T ðni � cÞ2ni ð8Þ

where ni ¼ 0; 1; 2; 3; 4; 5. The framewise H-VLBP opera-
tions are given below with respect to previous, current
and next frames. In Current Frame,

HLBPcrðcÞ ¼
X5

i¼0
T ðCrni � cÞ2ni ð9Þ

In Previous Frame,

HLBPprðcÞ ¼
X5

i¼0
T ðP rni � cÞ2ni ð10Þ

In next Frame,

HLBPntðcÞ ¼
X5

i¼0
T ðntni � cÞ2ni ð11Þ

Thresholding the difference between centre pixel and its
neighbours are given in Eqs. (12)–(14).

THLBPpr ¼ T ½dðcpr;CcrÞ þ
X5

i¼0
dðP rni;CcrÞ� ð12Þ



Fig. 4. Neighbour selection topologies. (a) Pentagon (b) Octagon (c) Heptagon.
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THLBPcr ¼ T ½dðCcr;CcrÞ þ
X5

i¼0
dðCrni;CcrÞ� ð13Þ

THLBPnt ¼ T ½dðCnt;CcrÞ þ
X5

i¼0
dðntni;CcrÞ� ð14Þ

where

T ðxÞ ¼ 1; if x P 0

0; else

�

where x represents the difference between the neighbour
pixels and centre pixel. d represents difference between
two pixels. T represent for threshold. Finally,

H-VLBPF i ¼ V ½THLBPpr; THLBPcr; THLBPnt� ð15Þ
Eq. (15) represents the joint distribution of THLBPpr,
THLBPcr and THLBPnt binary patterns. H-VLBPF i is mul-

tiplied by weights 2i, where i = 0, 1, 2, . . . + 3 N + 2.
H-VLBPN ;R represent the hexagonal VLBP with N

neighbours and radius R.



Fig. 5. Hexagonal neighbourhood. (a) Vertices in the hexagonal structure, (b) hexagonal neighbourhood structure with angle, (c) and (d) represents spatial
coordinates of the hexagonal neighbours of a pixel (x, y) at a radius R = 1.

80 K. Kiruba et al. / Cognitive Systems Research 58 (2019) 71–93
Feature count of six point neighbour selection is calcu-
lated using Eq. (16).

Dimensionality of H-VLBPðHbsÞ ¼ 2ð2ðNþ1ÞþNÞ ð16Þ
where N = 6. Final estimated histogram is normalized
using Eq. (17). X i refers to feature vectors. Normalized his-
togram converted to single row feature vectors ½1� X i�.

X i ¼
XHbs

b¼1
jHbj ð17Þ

Hb is histograms resultant with H-VLBP. X i is normalized
to dimensionality of H-VLBP.

3.2.4. Rotation invariant H-VLBP

VLBP is not rotation invariant. Bitwise clockwise and
anticlockwise shift on the 6-bit binary pattern has been
used to overcome the limitation of variance to rotation.
Eq. (18) is used to achieve the rotation invariance property
(Ojala et al., 2000, 2002; Zhao & Pietikainen, 2007). The
rotation invariance H-VLBP,

H-VLBPRt
N ;R ¼ minffH-VLBPN ;Rand2

3Nþ1g
þfH-VLBPN ;Rand1g
þROLfRORfHLBPpr;N ; 2N þ 1gg
þROLfRORfHLBPcr;N ;N þ 1gg
þROLfRORfHLBPnt;N ; 1ggg

ð18Þ

where ROR represent the bit-wise clockwise shift rotation
and ROL represent the bit-wise anticlockwise shift rota-

tion. 23Nþ1, 1, 2 N + 1 and N + 1 represent the number of
shifts. N is the number of neighbours and is set to 6. R is
radius and is set to 1.

The six point neighbourhood selection can result in var-
ious unique rotation patterns. From these pattern, the cir-
cularly symmetric hexagon neighbour set, H-VLBPrt

6;1 is

considered. The rotation is done until a match is found
in the set of unique patterns. The resultant matched pattern
is taken as the feature vector in H-VLBP.

3.3. Multi class human action recognition using the deep

stacked autoencoder

The dimensionality of H-VLBP (2ð2ðNþ1ÞþNÞ) is large.
Hence, storing and managing the feature vectors are diffi-
cult. In order to overcome this issue, the dimensionality
reduction technique is used. The popular dimensionality
reduction techniques that are used in literature are Princi-
ple Component Analysis (PCA) (Sorzano, Vargas, &
Montano, 2014), Independent Component analysis (ICA)
(Van Der Maaten, Postma, & Van den Herik, 2009), Local
linear embeddings (Wang & Sun, 2015), Isomap (Van Der
Maaten et al., 2009), and so on. Most of the developed
methods work effectively in reducing the dimensionality
of feature vectors. Recently, autoencoders are being used
in solving dimensionality reduction problems. Autoen-
coders or auto associative neural network has been intro-
duced by Sisodiya. In this paper, the deep stacked
autoencoder is used for dimensionality reduction and the
output layer is activated by softmax function for multi class
human action recognition.



Fig. 6. H-VLBP Procedure with R = 1, N = 6 and FI = 1.

K. Kiruba et al. / Cognitive Systems Research 58 (2019) 71–93 81
A stacked autoencoder is a neural network consisting of
multiple layers of sparse autoencoders. The input data is
fed to the hidden layers and trained in an unsupervised
manner. The outputs of each layer is wired to the inputs
of the successive layer. Any autoencoder with more than
three layers (one input layer + one hidden layer + one out-
put layer) is called the deep stacked autoencoder. The total
number of input sequences taken in this experiment is par-
titioned into three sets in the ratio of 70:15:15 for training,
validation and testing set. Initially, training dataset is used
to train the deep stacked autoencoder. Determining the
number of neurons in the hidden layers should be two-
thirds the size of the input neurons. There is no theoretical
reason to use more than two hidden layers. In this work,



Fig. 7. H-VLBP with hexagon in 3D view: Hexagonal Prism.

Table 1
Notations and their explanations.

Notations Explanations

ni Neighbours, where i = 0, 1, 2, 3, 4, 5
N Total number of neighbours
C Centre pixel
T Threshold
2n Weight updation where n = 0, 1, 2, 3, 4, 5
Crni Neighbours of current frame
Prni Neighbours of previous frame
ntni Neighbours of next frame
Cpr Center pixel in the previous frame
Ccr Center pixel in the current frame
Cnt Center pixel in the next frame
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the objective of using the deep stack autoencoder is to
reduce the dimensionality of the input feature vector. In
this work, the number of hidden layers varies from 2 to
7. The number of hidden layers increases that resultant
with reduced feature vector size. The output layer is trained
in the n-dimensional feature vectors by softmax function in
a supervised manner. The softmax layer size is given by the
user and it is of the same size as that of the targets.

Training the deep stacked autoencoder:

Let I representing the feature vector X = ðX iÞT where
i = 0, 1, 2, . . . , z extracted by H-VLBP be wired to the
encoder. z represents the number of examples in the train-
Table 2
Characteristics of the datasets used in this work.

S. No. Characteristics KTH dataset Weizman

1 Activities 6 10
2 Total Clips 600 90
3 Video format Mpeg-4 Mpeg-4
4 Frame rate 25 fps 50 fps
5 Resolution 160 � 120 180 � 14
6 Number of clips per activity 25 clips 10 clips
ing set. The sigmoid activation function is defined by the
Eq. (19)

Sigmoid activationf ðxÞ ¼ 1

1þ exp�x
ð19Þ

The encoder consists of several hidden layers. The number
of hidden layer and their neuron size is specified by the
user. The neuron size should be 70–100 % of input size.
In the encoder part, each hidden layer output is given to
the successive layers. In the deep stacked autoencoder, sin-
gle complete presentation of the dataset to be learned is
named as an epoch or iteration. Encoder transforms the
input feature vector into new feature representation. The
first, second and third hidden layers have different number
of hidden neurons based on input neurons. The user-
defined parameter values are as follows: maximum epochs
varied between 100 and 1000, L2 weight regularization var-
ied between 0.001 and 0.01, sparsity regularization varied
between 1 and 4, and sparsity proportion varied between
0.15 and 0.65. All values are obtained experimentally.

Softmax layer:
The last layer is a softmax layer trained to generate

multi class classification of human actions. It is fully con-
nected and the maximum epochs is set to 1000. Then deep
stacked autoencoder are trained by back propagation tech-
nique to minimize the recognition error.

The softmax activation function is defined by Eq. (20)

Softmax activationf ðxjÞ ¼ exjPk
k¼1e

xk
ð20Þ
4. Experiments and results

This paper reports the outcome of the proposed
approach on three datasets. The proposed approach is
compared with related works to show the effect of the H-
VLBP descriptor. All the experiments are carried out using
the Windows 8 environment over Intel(R) Core(TM)
i7-4790 CPU processor with the speed of 3.60 GHz and
14 GB RAM.

4.1. KTH dataset

4.1.1. Dataset
KTH dataset (Guo et al., 2017; Selmi, El-Yacoubi, &

Dorizzi, 2016) is one of the most popular benchmark data-
sets for action recognition as reported in most of the HAR
n dataset UCF11 dataset IXMAS Synthetic dataset

11 13 6
1588 2340 88
Mpeg-4 Mpeg-4 Mpeg-4
30 fps 23 fps 25 fps

4 320 � 240 390 � 291 352 � 288
25 sets 13 sets 24 clips



Table 4
Action class names and indexes in KTH dataset.

Index Action name Index Action name

1 Boxing 4 Jogging
2 Hand Clapping 5 Running
3 Hand Waving 6 Walking

K. Kiruba et al. / Cognitive Systems Research 58 (2019) 71–93 83
literatures. It contains 6 actions. Table 4 shows the action
names and indexes of the KTH dataset. Each action is per-
formed 3–5 times by 8 different actors in different scenarios.
The scenarios of KTH datasets are shown in Table 3.
Examples of actions in KTH dataset are shown in Fig. 8.
Each action contains 300 to 400 frames per video approx-
imately. In this large number of frames, the same activity
has been performed by an actor 3 to 4 times. Instead of
applying the recognition method directly to the complete
video frame, the discriminative frames per action are
selected. The total number of sequences taken to process
the proposed approach is 504. The number of sequences
taken in each action is 104 sequences for boxing action,
66 sequences for hand clapping, 68 sequences for hand
waving, 80 sequences for jogging, 74 sequences for running
and 110 sequences for walking. ROI has been selected and
Table 3
Datasets and their scenarios.

Dataset Scenarios

KTH Static homogeneous background
Outdoor
Outdoor with scale variations
Different clothes

Weizmann Static homogenous background
Outdoor
Different Clothes

IXMAS Static homogenous background
Indoor
Multi-view point
Illumination variations

Fig. 8. Examples of actio
cropped for effective analysis. Each cropped frame is
resized for spatial normalization and converted to grays-
cale frames for further work. Each sequence contains a
maximum 10 frames.

4.1.2. Experimental setup
In this experiment, gray values of the DF i are modelled

as the volumetric data model or 3D model. The dimensions
of the volume are H �W � D. Spatially normalized video
Dataset Scenarios

Synthetic Static homogenous background
Outdoor
Outdoor with Scale variations
Different viewing angle
Different resolutions
Variations in Action capturing
Different Clothes

UCF11 Camera motion
Object appearance and pose variant
cluttered background
Illumination variations
Object scale and viewpoint invariant

ns in KTH dataset.
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sequences contain 100 � 100 � Di of Volume dimensions.
In the H-VLBP approach, the gray value of voxel which
is connected within the rectangular prism are taken for pro-
cessing. As mentioned in Section 3.2.4, by default FI and R
are set to 1. The circle and drawn using Eqs. (4)–(6) and the
hexagon angles {0 or 2p; p

3
; 2p
3
; p; 4p

3
; 5p
3
} are taken as

neighbourhood of 3 � 3 cell’s centre pixel. DF i is taken as
overlapping continuous three frames up to the end of the
sequence. Each frame is divided into non-overlapping
3 � 3 � 3 voxels. Each 3 � 3 � 3 voxels are represented
as previous, current and next frame. The process will con-
tinue until the end of the frame and end of the DF i . Finally,

2i different unique patterns are converted to a binary code
using Eqs. (12)–(14). The threshold of difference values of

neighbours and centre is multiplied with 2i weighted values.
The conversion from H-VLBP to rotation invariant
H-VLBP is performed using the bit wise shift transforma-
tion expressed in Eq. (18).

The extracted feature size of H-VLBP is 2ð2ðNþ1ÞþNÞ. The
deep stacked autoencoder is used to reduce the dimension-
ality of the feature vector. In KTH dataset, the total num-
ber of video sequences taken in this experiment is 504. It is
partitioned into three sets in the ratio of 70:15:15 for train-
ing, validation and testing sets. 352 videos are used as the
training dataset, 76 sequence are taken as the validation
set and 76 sequence are taken as the testing set for the deep
stacked autoencoder. The deep stacked autoencoder con-
sist of more than one hidden layer. The training samples
with the size of 352 samples are wired to the first hidden
layer (HL1) with size of 245 neurons. (HL1) is wired to sec-
ond hidden layer (HL2) with size of 170 neurons. 120 and 84
neurons are used in the third hidden layer (HL3) and fourth
hidden layer (HL4) respectively. The model is trained for
500 epochs using the conjugate gradient descent algorithm
and evaluated on test dataset. User defined parameter val-
ues are initialized as follows: L2 weight regularization is set
to 0.001, Sparsity regularization is set to 1, and sparsity
proportion is set to 0.15. Finally, a softmax layer is used
for multi-class classification.

4.1.3. Comparison with related works

In most of the literatures, all the extracted frames have
been used for feature extraction in human action recogni-
tion (Ahsan et al., 2014; Selmi et al., 2016). Some research-
ers have manually cropped the frames (Chun & Lee, 2016).
Key frame extraction (Sheena & Narayanan, 2015) have
been used in action recognition to reduce the time and
Table 5
Action class names and indexes in Weizmann dataset.

Index Action name

1 Bend
2 Jumping-Jack(or jack)
3 Jump-forward-on-two-legs(or Jump)
4 Jump-in-place-on-two-legs(pjump)
5 Run
space complexity. Key frame extraction has obtained repet-
itive frames and the reduced number of frame count is just
half the total count. Hence, in this work, the minimum
number of discriminative frames is used to reduce the time
and space complexity. The comparison is done with meth-
ods which uses all the frames as input. The computational
time of preprocessing in H-VLBP approach using KTH
dataset is shown in Table 9.

The confusion matrix of the proposed approach on the
KTH dataset is shown in Table 12. The vertical axis repre-
sent the actual class label and the horizontal axis represents
the distribution of the predicted label. Higher diagonal val-
ues are related to correct classification. The diagonal values
are shown in bold in Table 12. From the confusion matrix,
it can be seen that there are some mistaken recognitions,
because of some similarity between running, jogging and
walking. The average recognition accuracy of the proposed
approach is 97.6 % which is higher than the other state-of-
art methods. The experimental results show significant
improvement as compared with existing methods as indi-
cated in Table 18.
4.2. Weizmann dataset

4.2.1. Dataset

The Weizmann dataset (Al-Berry et al., 2016; Guo et al.,
2017) is a widely used benchmark dataset for HAR. It con-
tains 10 actions. Table 5 shows the action names and
indexes of Weizmann dataset. Each action is performed 3
to 5 times by 9 different actors with different scenarios.
The scenarios of Weizmann are shown in Table 2. Exam-
ples of actions in Weizmann dataset are shown in Fig. 9.
The total number of sequences used to process the pro-
posed approach is 180. 18 sequences were taken for bend
action, 18 sequences for Jack, 16 sequences for wave1, 16
for wave2, 20 for Pjump, 18 for skip1, 18 for run, 20 for
side, 18 for jump and 18 sequences for Walk. ROI has been
selected and cropped for effective analysis with gray level
frames and normalized spatial information. The maximum
number of frame in a sequence is 10.
4.2.2. Experimental setup

All of the parameter values were kept the same as those
used in KTH experiment. Default values are initialized and
H-VLBP feature extraction has been performed. The repre-
sentation described in Section 3.2 is given as input to a
stacked autoencoder to reduce the dimensionality of the
Index Action name

6 Gallop-side-ways(side)
7 Skip
8 Walk
9 Wave-one-hand (Wave1)
10 Wave-two-hands (or wave2)



Table 6
Action class names and indexes in UCF11 dataset.

Index Action name Index Action name

1 Basketball shooting 7 Swinging
2 Biking/Cycling 8 Tennis swinging
3 Driving 9 Trampoline jumping
4 Golf swinging 10 Volleyball spiking
5 Horse back riding 11 Walking with a dog
6 Soccer juggling

Fig. 9. Examples of actions in Weizmann dataset.
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feature vector. In Weizmann dataset, the total number of
video sequences taken in this experiment is 180. It is parti-
tioned into three sets in the ratio 70:15:15. 126 input
sequences are used as the training dataset, 27 sequences
are taken as the validation set and 27 sequences taken as
the testing set for the deep stacked autoencoder. The 126
training samples are wired to the first hidden layer of the
stacked autoencoder which is trained to learn the features
necessary to reconstruct the input into latent code with
reduced feature vector. (HL1) is trained with 88 neurons.
A second hidden layer is trained to reconstruct the features
learned by the first hidden layer. Hence, (HL1) is wired to
(HL2) with 62 neurons. The model is trained for 300 epochs
using conjugate gradient descent algorithm and evaluated
on the test dataset. Finally, a softmax layer is used for
multi-class classification.

4.2.3. Comparison with related works
The confusion matrix of the proposed approach on

Weizmann dataset is shown in Table 13. The predicted
recognition accuracy values are highlighted in bold font.
From the confusion matrix, it can be seen that there are
some mistaken recognitions, because of some similarity
actions with locomotion changes. The average recognition
accuracy of the proposed approach is 98.6% which is
higher than other state-of-art methods. The comparison
among the proposed approach and other state-of-art
action recognition approach is shown in Table 19. It can
be inferred that the proposed approach outperforms the
approaches used by Guo et al. (2017) and Ahsan et al.
(2014) in Weizmann dataset.

4.3. UCF11 dataset

4.3.1. Dataset

UCF11 dataset is a widely used benchmark dataset for
HAR. It contains 11 actions. Table 6 shows the action
names and indexes of the UCF11 dataset. The scenarios
of UCF11 are shown in Table 2. Examples of actions in
UCF11 dataset are shown in Fig. 10. The total number
of sequences used to process the proposed approach is
1588. 143 sequences were taken for basketball shooting
action, 135 sequences for biking or cycling, 156 sequences
for driving, 143 for golf swinging, 198 for horseback riding,
156 for soccer juggling, 137 for swinging, 167 for tennis
swinging, 115 for trampoline jumping, 115 sequences vol-
leyball spiking and 123 sequences for walking with a dog.
ROI has been selected and cropped for effective analysis
with gray level frames and normalized spatial information.
The maximum number of frame in a sequence is 10.

4.3.2. Experimental setup

The H-VLBP feature vectors have been computed. In
order to reduce the dimensionality of the feature vector,
the deep stacked autoencoder has been used. The deep
stacked autoencoder consists of more than one hidden
layer. In UCF dataset, the total number of video sequences
taken in this experiment is 1588. It is partitioned into the
training set, validation set and testing set in the ratio
70:15:15. 1112 input sequences are used as the training
dataset, 238 sequences are taken as the validation set and
238 sequences are taken as the testing dataset for the deep
stacked autoencoder. The input samples with a size of 1112
samples are wired to (HL1) with size of 778 neurons. (HL1)



Fig. 10. Examples of actions in UCF11 dataset.
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is wired to (HL2) with the size of 545 neurons. In this study,
382, 267, 187, 131 and 92 neurons are used in (HL3), (HL4),
fifth hidden layer (HL5), sixth hidden layer (HL6) and sev-
enth hidden layer (HL7) respectively. The model is trained
for 500 epochs using conjugate gradient descent algorithm
and evaluated on test dataset.

4.3.3. Comparison with related works

The confusion matrix of the experiment carried out on
UCF11 dataset using the proposed approach is shown in
Table 14. The average recognition accuracy of UCF11
dataset is 91.3%. Comparison with other related works is
shown in Table 20.

4.4. IXMAS dataset

4.4.1. Dataset

INRIA Xmas Motion Acquisition Sequences (IXMAS)
dataset contains 13 daily life actions performed by 11 per-
sons. Each action is performed 3 times. The 13 actions and
their indexes are shown in Table 7. Examples of IXMAS
dataset actions are shown in Fig. 11. The total number of
sequences used to experiment the proposed approach is
1514. 120 sequences were taken for check watch action,
128 sequences for cross arms, 134 sequences for scratch
head, 118 sequences for sit down, 98 sequences for get
up, 110 sequences for turn around, 112 sequences for walk,
104 sequences for wave, 121 sequences for punch, 128
Table 7
Action class names and indexes in IXMAS dataset.

Index Action name Index Action name

1 Check watch 8 Wave
2 Cross arms 9 Punch
3 Scratch head 10 Kick
4 Sit down 11 Point
5 Get up 12 Pickup
6 Turn around 13 Throw
7 Walk
sequences kick, 102 sequences for point, 135 sequences
for pickup and 104 sequences for throw. ROI has been
selected and cropped for effective analysis with gray level
frames and normalized spatial information. The maximum
number of frames in a sequence is 10.

4.4.2. Experimental setup

In the IXMAS dataset, the total number of video
sequences taken in this experiment is 1514. It is partitioned
into the training set, validation set and testing set in ratio
70:15:15. 1135 input sequences are used as the training
dataset, 227 sequences are taken as the validation set and
227 sequences are taken as the testing dataset for the deep
stacked autoencoder. The input samples with a size of 1135
samples are wired to (HL1) with size of 801 neurons. First
hidden layer (HL1) is wired to second hidden layer (HL2)
with the size of 568 neurons. In this study, 405, 290, 210,
154 and 115 neurons are used in third hidden layer (HL3),
fourth hidden layer (HL4), fifth hidden layer (HL5), sixth
hidden layer (HL6) and seventh hidden layer (HL7) respec-
tively. The model is trained for 500 epochs using conjugate
gradient descent algorithm and evaluated on test dataset.

4.4.3. Comparison with related works

The confusion matrix shown in Table 15 is obtained
using H-VLBP feature vectors to recognize the IXMAS
dataset action sequences. The average recognition accuracy
of IXMAS dataset is 88.76%. Comparison with other
related works is shown in Table 21.

4.5. Synthetic dataset

4.5.1. Dataset

Synthetic dataset is acquired using the Nikon D3400
DSLR Camera with a single lens for different types of
jumping actions. It contains five actions. Table 8 shows
the action names and indexes of the Synthetic dataset.
Example actions are shown in Fig. 12. Each action is per-
formed single time per video by 6 different actors in differ-



Fig. 11. Examples of actions in IXMAS dataset.

Table 8
Action class names and indexes in synthetic dataset.

Index Action name Index Action name

1 Wall Jumping 4 Building to building entry
2 Walking from Building to Building 5 Building to Building Jumping
3 Entering via roof

Fig. 12. Examples of actions in synthetic dataset. (a) Wall Jumping (b) Walking from Building to Building (c) Entering via roof (d) Building to building
entry (e) Building to Building Jumping.
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ent environment. The different scenarios are shown in
Table 2. 154 sequences of action are considered in this
work. 50 sequences were used for wall Jumping, 24
sequences for walking from building to building, 28
sequences for entering via roof, 18 for entering from build-
ing to building and 34 for building to building jumping.
The maximum number of frames in a sequence is 10.
Gray-level resized ROI frames are extracted and discrimi-
native frames for each action have been selected. These dis-
criminative frames have been used for H-VLBP.
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4.5.2. Experimental setup

The H-VLBP feature vectors have been computed as
was done with the benchmark dataset. In synthetic dataset,
the total number of video sequences taken in this experi-
ment is 154. It is partitioned into three sets in the ratio
70:15:15. 108 input sequences are used as the training data-
set, 23 sequences are taken as the validation set and 23
sequences are taken as the testing dataset for the deep
stacked autoencoder. The 108 input samples are wired to
(HL1) with 76 neurons. (HL1) is wired to (HL2) with the size
of 53 neurons. (HL2) is wired to the 37 neurons of (HL3).
The model is trained for 300 epochs using the conjugate
gradient descent algorithm and evaluated on the test data-
set. Finally, a softmax layer is used for multi-class
classification.

4.5.3. Results

The confusion matrix shown in Table 16 is obtained
using H-VLBP feature vectors to represent the synthetic
action sequences. B2B represent the building to building.
Enter-roof represent the action of entering through the
roof. The greatest confusion is between building to build-
ing entry and building to building jumping. For some
actors, building to building jumping is very similar to
building to building entry and vice versa. The recognition
accuracy of synthetic dataset is 90.9%.

5. Discussion

The proposed approach is an extended version of VLBP
with the circularly symmetric neighbourhood. The draw-
back of the circularly symmetric neighbourhood and pro-
posed H-VLBP approach is the length of the feature
vector and the time complexity involved in feature extrac-
tion. In this paper, to overcome the dimensionality prob-
lem, the deep stacked autoencoder is used to reduce the
Table 9
Computation time of preprocessing in H-VLBP approach for a sample
video sequence from KTH dataset.

Elapsed time Number of frames Method

98.25 s 360 Sample video sequence
36.46 s 132 Key frames
42.63 s 12 DF i

2.49 s 12 ROIðDF i Þ
2.07 s 12 ResizeðDF i Þ

Table 10
Feature Length of VLBP method.

Neighbourhood topology Neighbourhood points Feature length

Triangle 3 256
Quadrilateral 4 16384
Pentagon 5 131072
Hexagon 6 1048576
Heptagon 7 8388608
Octagon 8 67108864
dimension of the feature vector. The research additionally
focuses on minimizing the time to extract the feature vec-
tors and improving the accuracy of action recognition.
Hence, in this work discriminative frames per action are
used, thereby reducing the time complexity. The perfor-
mance of VLBP features is very sensitive to neighbourhood
topology and the number of connected neighbours. The
feature vector length of VLBP method using different geo-
metric neighbourhood topologies are shown in Table 10.
Deep stacked autoencoder has been already discussed in
Section 3.3. In this discussion, the effect of the number of
hidden layer on recognition accuracy has been analysed.

Effects of H-VLBP approach and its Recognition accu-
racy in KTH, Weizmann, UCF11, IXMAS and synthetic
dataset using different classifier are shown in Table 17.
From the experiments two layer FFNN performs well
and provides better results. The choice of user specified
parameters, namely, the number of hidden neurons and
the number of epochs for the two layer Feed Forward Neu-
ral Network (FFNN) are discussed below.

Two layer Feed Forward Neural Network:

Two-layer FFNN consist of a series of two layers,
namely, the hidden layer and the output layer. Initially,
the input data are partitioned into training data, validation
data and testing data. The training data will adjust the
weights on the neural network. The control of learning pro-
cess and overfitting minimization is handled by validation
data. Finally, the quality evaluation of the learning is done
using testing data. The testing quality is measured in terms
of cross-Entropy (CE) and Percent Error (%E). CE is the
error rate of misclassified data. The %E is the fraction of
misclassified samples. Small values of CE and %E indicate
good classification performance.

In KTH dataset, the total number of video sequences
taken in this experiment is 508. It is partitioned into three
sets in the ratio 70:15:15. 352 videos are used as the training
dataset, 76 sequences are taken as the validation set and 76
for the testing the multi-class actions. In Weizmann data-
set, the total number of Video sequences taken in this
experiment is 180. It is partitioned into 126 sequences were
used as the training dataset, 27 sequences as the validation
set and 27 for testing the proposed approach. In UCF11
dataset, the total number of video sequences taken in this
experiment is 1588. It is partitioned into 1112 sequences
and used as the training dataset, 238 sequences as the val-
idation set and 238 for testing the proposed approach. In
IXMAS dataset, the total number of video sequences taken
in this experiment is 1135. It is partitioned into training
dataset comprising of 851 sequences, validation set com-
prising of 170 sequences and testing set comprising of
170 sequences. In synthetic dataset, the total number of
video sequences taken in this experiment is 154. It is parti-
tioned into 108 sequences were used as the training dataset,
23 sequences as the validation set and 23 for testing the
proposed approach.

The number of hidden neurons versus cross-entropy
(CE) of training, validation and testing are shown in
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Figs. 13–15. The line and dashed line represent the CE val-
ues at epoch j and epoch k respectively. The CE values
epoch j and epoch k go down as more neurons are added
to the model. It starts to go up sharply after 10 possibly
indicating over fitting. From the analysis between the var-
ious number of hidden neurons and cross-entropy, the
number of hidden neurons used in this work is 10 since it
minimizes the cross-entropy values. In this work, the max-
Fig. 13. The Number of hidden neurons versus training Cross-Entropy
(CE) error.

Fig. 14. The Number of hidden neurons versus validation Cross-Entropy
(CE) error.

Fig. 15. The Number of hidden neurons versus testing Cross-Entropy
(CE) error.

Fig. 16. Epoch versus Recognition accuracy for KTH, Weizmann,
UCF11, IXMAS and synthetic dataset.
imum training epoch is set between 100 and 500. Fig. 16
shows the recognition accuracy against the number of
epochs for the KTH dataset, Weizmann dataset, UCF11
dataset, IXMAS dataset and the synthetic dataset. The
highest accuracy on the test frame sequences was found
to be 97.3 % in KTH dataset at epoch 97, 96.3 % in Weiz-
mann dataset at epoch 93, 90.2% in UCF11 dataset at
epoch 98, 84.52% in IXMAS dataset at epoch 93 and
90.9% in synthetic dataset at epoch 97.

The effects of various geometric shapes and their recog-
nition accuracy using deep stacked autoencoder vs two
layer feed forward neural network are shown in Table 11.
The experiments have been performed on four different
types of human action dataset. From the results, it can
be concluded that:

1. Discriminative frame selection improves the effective-
ness of human action recognition and is used to mini-
mize the time and space complexity.

2. H-VLBP performs better than VLBP for feature extrac-
tion for HAR. This is because of the hexagonal neigh-
bourhood selection.

3. Dimensionality reduction has been achieved using the
deep stacked autoencoder. Additionally, the proposed
work has been evaluated in two layer FFNN without
dimensionality reduction.

6. Conclusion and future work

In this paper, the H-VLBP descriptor has been proposed
to involve an overlapping single step size in the spatio-
temporal domain with the hexagonal neighbourhood selec-
tion to accumulate the motion and temporal information
from the video frames. The computation of motion and
temporal information helps to distinguish similar actions.
Moreover, instead of using the circular neighbourhood
selection in VLBP, the hexagonal neighbourhood selection
is used in this work which results in characterising the rich
dynamic information such as edge, corner and so on. The
resultant H-VLBP code has been computed with weights

of 2N . The resultant histogram is converted to the feature



Table 11
Effects of various geometric shapes and its Recognition accuracy using deep stacked autoencoder vs two layer feed forward neural network. a represent
deep stacked autoencoder and b represents Two Layer feed forward neural network. Bold value represent accuracy of proposed method, H-VLBP.

N a b

KTH Weizmann UCF11 IXMAS Synthetic KTH Weizmann UCF11 IXMAS Synthetic

3 71.4 79.5 72.4 69.0 80.1 71.9 72.3 79.6 70.1 81.5
4 80.2 80.8 86.6 72.0 81.2 79.5 80.5 75.9 79.1 80.2
5 88.1 89.3 83.6 90.5 89.2 85.7 89.3 86.9 82.1 88.1
6 97.6 98.6 91.3 84.52 93.0 97.3 96.3 90.2 88.76 90.9

7 94.0 96.4 89.3 82.3 88.1 94.0 88.1 90.5 84.1 92.1
8 89.3 90.7 88.1 81.4 86.1 86.9 88.1 90.5 84.7 91.7

Table 12
Confusion Matrix obtained by H-VLBP over the KTH dataset. Each column corresponds to the predicted category and each row corresponds to the
ground truth category.

Boxing Handc Handw Jogging Running Walking

Boxing 1.00 0.00 0.00 0.00 0.00 0.00
Handc 0.00 1.00 0.00 0.00 0.00 0.00
Handw 0.00 0.00 1.00 0.00 0.00 0.00
Jogging 0.00 0.00 0.00 0.97 0.02 0.01
Running 0.00 0.00 0.00 0.00 0.98 0.02
Walking 0.00 0.00 0.00 0.03 0.00 0.97

Table 13
Confusion Matrix obtained by H-VLBP over the Weizmann dataset. Each column corresponds to the predicted category and each row corresponds to the
ground truth category.

Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

Bend 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jack 0.00 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Jump 0.00 0.00 0.95 0.02 0.00 0.00 0.02 0.01 0.00 0.00
Pjump 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
Run 0.00 0.02 0.00 0.00 0.95 0.02 0.00 0.01 0.00 0.00
Side 0.00 0.01 0.00 0.00 0.02 0.97 0.00 0.00 0.00 0.00
Skip 0.00 0.00 0.01 0.00 0.00 0.02 0.95 0.02 0.00 0.00
Walk 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00
Wave1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00
Wave2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 14
Confusion Matrix obtained by H-VLBP over the UCF11 dataset. Each column corresponds to the predicted category and each row corresponds to the
ground truth category.

shoot spike jump juggle ride cycle dive swing g_swing t_swing walk

shoot 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Spike 0.10 0.84 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00
Jump 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Juggle 0.00 0.00 0.04 0.89 0.00 0.07 0.00 0.00 0.00 0.00 0.00
Ride 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.02 0.04 0.04 0.00
Cycle 0.00 0.00 0.00 0.02 0.00 0.92 0.02 0.00 0.00 0.00 0.04
Dive 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.01 0.03 0.07 0.00
Swing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.02 0.01 0.04
g_swing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.04 0.02
t_swing 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.04 0.04 0.85 0.00
walk 0.00 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.93
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vector as a compact and discriminative representation. The
deep stacked autoencoder is used to reduce the dimension-
ality of the feature vector and the last softmax layer is used
to classify the multi-class human actions. The proposed H-
VLBP is extensively evaluated on two benchmark datasets
and one synthetic dataset. Experimental results show that



Table 15
Confusion Matrix obtained by H-VLBP over the IXMAS dataset. Each column corresponds to the predicted category and each row corresponds to the
ground truth category.

Check Cross Scratch Sit Get Turn Walk Wave Punch Kick Point Pick up Throw

Check 0.80 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00
Cross 0.15 0.75 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Scratch 0.00 0.00 0.70 0.03 0.07 0.00 0.00 0.00 0.00 0.05 0.15 0.00 0.00
Sit 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Get 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
Turn 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Walk 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Wave 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.70 0.12 0.01 0.04 0.00 0.00
Punch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.04 0.02 0.00 0.00
Kick 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.04 0.04 0.85 0.00 0.00 0.00
Point 0.00 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00
Pickup 0.00 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00
Throw 0.00 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93

Table 16
Confusion Matrix obtained by H-VLBP over the synthetic dataset. Each column corresponds to the predicted category and each row corresponds to the
ground truth category.

Wall Jump B2B Walk Enter-roof B2B entry B2B Jump

Wall Jump 1.00 0.00 0.00 0.00 0.00
B2B Walk 0.00 1.00 0.00 0.00 0.00
Enter-roof 0.00 0.00 1.00 0.00 0.00
B2B entry 0.00 0.00 0.00 0.80 0.20
B2B Jump 0.00 0.00 0.00 0.15 0.85

Table 17
Effects of H-VLBP approach and its Recognition accuracy in KTH, Weizmann, UCF11, IXMAS and synthetic dataset using different classifier.

Classifier KTH Weizmann UCF11 IXMAS Synthetic

SVM 90.3 94.7 84.1 83.3 81.4
Ensemble (Random subspace K-Nearest Neighbor) 93.5 96.8 88.7 81.9 80.6

FFNN 97.3 96.3 90.2 84.76 90.9

Table 18
Comparison of average recognition accuracy over the KTH dataset. Bold text and value represent method and accuracy
of proposed H-VLBP approach respectively.

Method Accuracy(%)

LBP-Top (Abdolahi et al., 2012) 77.3
DW-LBP with moments (Al-Berry et al., 2016) 96.0

LBP_H (Li et al., 2016) 73.0
3D Gradient LBP Descriptor (Guo et al., 2017) 92.25

3D CNN (Ji et al., 2013) 90.2
SDTD (Shi et al., 2016) 96.8

Online deep learning method + KNN (Charalampous & Gasteratos, 2016) 91.99
Online deep learning method + SVM (Charalampous & Gasteratos, 2016) 89.86

H-VLBP+ Two layer FFNN 97.3

H-VLBP+ Deep stacked autoencoder 97.6
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the proposed approach outperforms the state-of-art meth-
ods in two benchmark datasets. Additional tests on col-
lected synthetic dataset confirm that the H-VLBP
descriptor is able to handle real-time environment which
contains more challenging frame rate differences and com-
plicated jump and walk actions in different scenarios.

In this paper, the proposed approach depends on the use
of representative frames per action which overcome the
limitation of number of frames, space and time complexity.
For instance, it is not easy to mining a set of representative
frames from videos having a large number of similar
frames. The proposed approach requires an enormous
amount of time and attention during the discriminative
frame selection, which may be a burden when dealing with
much more larger videos or frames per seconds. Hence, in
the future, the work aims to explore the automatic extrac-



Table 19
Comparison of average recognition accuracy over the Weizmann dataset. Bold text and value represent method and
accuracy of proposed H-VLBP approach respectively.

Method Accuracy(%)

LBP-TOP (Kellokumpu et al., 2008) 95.6
MHI_LBP_H (Ahsan et al., 2014) 90.56

MHI_LBP_H+SF (Ahsan et al., 2014) 90.56
DMHI_LBP_H (Ahsan et al., 2014) 93.15

DMHI_LBP_H+SF (Ahsan et al., 2014) 94.26
3D Gradient LBP Descriptor (Guo et al., 2017) 92.88

Online deep learning method + KNN (Charalampous & Gasteratos, 2016) 94.7
Online deep learning method + SVM (Charalampous & Gasteratos, 2016) 100

H-VLBP+ Two layer FFNN 96.3

H-VLBP+ Deep stacked autoencoder 98.6

Table 20
Comparison of average recognition accuracy over the UCF11 dataset. Bold text and value mean method and
accuracy of proposed H-VLBP approach respectively.

Method Accuracy(%)

Online deep learning method + KNN (Charalampous & Gasteratos, 2016) 84.64
Online deep learning method + SVM (Charalampous & Gasteratos, 2016) 88.65

Average pooled + LSTM (Sharma et al., 2015) 82.56
Max pooled + LSTM (Sharma et al., 2015) 81.6

H-VLBP+ Two layer FFNN 90.2

H-VLBP+ Deep stacked autoencoder 91.3

Table 21
Comparison of average recognition accuracy over the IXMAS dataset.
Bold text and value mean method and accuracy of proposed H-VLBP
approach respectively.

Method Accuracy(%)

ST-tSNE (Cheng et al., 2015) 73.64
HOMID (Chun & Lee, 2016) 83.03

MMHI (Su et al., 2016) 84.0
H-VLBP+ Two layer FFNN 84.52

H-VLBP+ Deep stacked autoencoder 88.76
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tion of representative frames per action. Ongoing work
focuses on further improvement by reducing the length of
the feature vector using uniform multi-view orthogonal
planes with geometric-shape based neighbourhood.
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