Centre for Medical Electronics

Anna University, Chennai

3.3.1 Institution has created an eco-system for innovations including Incubation centre and other initiatives for creation and transfer of knowledge

During the period of July 2017 to June 2018 Centre for Medical Electronics (CME) had received 2 sponsored projects funded by DST and LSRB-DRDO.

S.No	Name of the Project/	Name of the	Sponsored	Duration	Sanctioned
	Endowments, Chairs	Principal	by		amount in
		Investigator/ Co			lakhs
		Investigator			
1	Development of	Dr. S. Shenbaga	DST	2016-2019	44.8
	Low Cost Sweep	Devi			
	VEP System				
2	Design and		LSRB-	2017-2020	30.5
	development of bio-		DRDO		
	potential signal	Dr. M. Sasikala			
	analysis system for	(PI),			
	control of mobility	Dr.S.Poonguzhali			
	assistive device	(CoPI			

1. Development of Low Cost Sweep VEP System

Investigators:

Dr.S.Shenbaga Devi Professor & Director Centre for Medical Electronics Services Anna University, Chennai Dr.Parveen Sen Senior Consultant, Vision Research Foundation 18, College Road, Nungambakkam, Chennai – 600 006.

Dr.Ronnie J George Director – Research Deputy Director, Glaucoma Industry Partner M/s Appasamy Assoicaites Chennai

Need for the device

- + Helps to quantify visual function.
- + Helps to assess objective visual function
- + Complementary test for ambylopia in pre-verbal children(lazy eye- 2 to 3 children out of 100)
- + Can be used to assess the visual pathway in neurological disorders
- + Amblyopia if untreated , leads to monocular /visual impairment among young and middle aged adults(National Eye Institute- Part of National Institutes of Health).
- + In India, the prevalence of amblyopia is 0.8% in urban and 0.2% in rural children.

Advantages

- + Conventional VEP takes more time than sweep VEP
- + Sweep VEP tests a wider range of acuity in a shorter time with automated analysis
- + Useful for
 - + Preverbal children
 - + Non cooperative subjects (eg. people with psychological disorders)
 - + In individuals with developmental delay / sub normal comprehension

Deliverables:

 + A system that can generate stimulus patterns at the required rate, can record steady state VEP signal and compute the parameters associated with visual acuity

Stimulus patterns :

Comparison of Vision between normal eye and lazy eye

The corresponding work is filed for patent - Application No. 201941004031, and technology transferred with the industrial partner M/s Appasamy associates, Chennai.

2. Design and development of bio-potential signal analysis system for control of mobility assistive device

Objectives:

- Development of Bio-potential signals (EEG, EMG and EOG) based control of mobility assistive device to offer a new means of communication for those with paralysis or severe neuromuscular disorders.
- Development of indigenous Bio-potential amplifier to acquire EEG/EMG/EOG signals, which can be used as control signals for mobility assistive device.
- Development of advanced signal processing and classification techniques to efficiently

identify the intended signatures from each of the bio- potential signals and validate the same

Motor imagery EEG system for control of wheelchair

Indigenously developed EOG basedcontrol of wheelchair

Indigenously developed EMG based controlof wheelchair

Applications:

- Biosignal based wheelchair can be used for those with amyotrophic lateral sclerosis (ALS), brain or spinal cord injury or other neuromuscular disorders.
- Biosignal based Robotic exoskeleton, help people with spinal injury to walk again using the developed signal processing algorithm.

S.No	Workshop Title	Name of the	Date	No of
		Coordinators		participants
1	Gait Analysis and	Dr. M. Sasikala	4th and 5th	40
	Rehabilitation	Dr.S.Poonguzhali	October 2017	
		Dr.T.Jayasree		
2	Brain computer	Dr.S.Shenbaga	21st and 22nd	50
	Interface(BCI) and	Devi,	September	
	applications	Dr.N.Kumaravel,	2017	
		Mrs.T.Jayasree		
		•		

Workshop organized during this period

The workshop was held at Mini auditorium, Department of ECE, CEG, Anna University Chennai.

The workshop was held at Mini auditorium, Department of ECE, CEG, Anna University Chennai

University with potential for Excellence in Biomedical Engineering and Instrumentation (UPE-BI)

During the year of 2017 to 2018 UGC awarded the coveted status of **University** with Potential for Excellence in Biomedical Engineering and Instrumentation and all the faculty members from the CME were actively involved in the implementation of the project.